Package check result: OK Changes to worse in reverse depends: Package: CoTiMA Check: examples New result: ERROR Running examples in ‘CoTiMA-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: ctmaBiG > ### Title: ctmaBiG > ### Aliases: ctmaBiG > > ### ** Examples > > ## Not run: > ##D # perform analyses of publication bias and generalizability > ##D CoTiMAInitFit_D_BO$activeDirectory <- "/Users/tmp/" # adapt! > ##D CoTiMABiG_D_BO <- ctmaBiG(ctmaInitFit=CoTiMAInitFit_D_BO, zcurve=FALSE) > ## End(Not run) > > # display results > summary(CoTiMABiG_D_BO) $model [1] "Analysis of Publication Bias & Generalizability" $estimates $estimates$`Fixed Effects of Drift Coefficients` V1toV1 V2toV1 V1toV2 V2toV2 MeanOfDriftValues -0.0590 0.0219 0.0112 -0.0539 FixedEffect_Drift -0.0219 0.0053 0.0024 -0.0133 FixedEffect_DriftVariance 0.0000 0.0000 0.0000 0.0000 FixedEffect_DriftSE 0.0004 0.0004 0.0003 0.0003 FixedEffect_DriftUpperLimit -0.0211 0.0061 0.0030 -0.0128 FixedEffect_DriftLowerLimit -0.0227 0.0046 0.0018 -0.0139 FixedEffect_DriftZ -54.3759 14.8119 7.5051 -46.5553 FixedEffect_DriftProb 0.0000 0.0000 0.0000 0.0000 tau2Drift 0.0001 0.0001 0.0000 0.0001 Q_Drift 772.8941 534.5197 217.5015 1235.3390 H2_Drift 16.4446 11.3728 4.6277 26.2838 H2DriftUpperLimit 18.0378 12.6111 5.2907 28.4719 H2DriftLowerLimit 14.9920 10.2560 4.0477 24.2639 I2_Drift 93.9190 91.2071 78.3910 96.1954 I2DriftUpperLimit 94.9458 92.8491 83.4677 96.7577 I2DriftLowerLimit 92.6835 89.1880 71.7552 95.5355 $estimates$Heterogeneity V1toV1 V2toV1 V1toV2 V2toV2 tau2Drift 0.0001 0.0001 0.0000 0.0001 Q_Drift 772.8941 534.5197 217.5015 1235.3390 H2_Drift 16.4446 11.3728 4.6277 26.2838 H2DriftUpperLimit 18.0378 12.6111 5.2907 28.4719 H2DriftLowerLimit 14.9920 10.2560 4.0477 24.2639 I2_Drift 93.9190 91.2071 78.3910 96.1954 I2DriftUpperLimit 94.9458 92.8491 83.4677 96.7577 I2DriftLowerLimit 92.6835 89.1880 71.7552 95.5355 $estimates$`I2 message` NULL $estimates$`Tau2 message` NULL $estimates$`Random Effects of Drift Coefficients` V1toV1 V2toV1 V1toV2 V2toV2 RandomEffecttot_Drift -0.0402 0.0114 0.0061 -0.0380 RandomEffecttot_DriftVariance 0.0000 0.0000 0.0000 0.0000 RandomEffecttot_DriftSE 0.0021 0.0017 0.0011 0.0021 RandomEffecttot_DriftUpperLimit -0.0360 0.0147 0.0082 -0.0339 RandomEffecttot_DriftLowerLimit -0.0444 0.0080 0.0039 -0.0420 RandomEffecttot_DriftZ -18.8218 6.6937 5.5527 -18.2167 RandomEffecttot_DriftProb 0.0000 0.0000 0.0000 0.0000 RandomEffecttot_DriftUpperLimitPI -0.0169 0.0289 0.0153 -0.0149 RandomEffecttot_DriftLowerLimitPI -0.0636 -0.0062 -0.0032 -0.0611 $estimates$`PET-PEESE corrections` V1toV1 V2toV1 V1toV2 V2toV2 PET_Drift -0.0149 0.0031 0.0010 -0.0079 PET_SE 0.0014 0.0015 0.0008 0.0010 PEESE_Drift -0.0206 0.0048 0.0021 -0.0126 PEESE_SE 0.0013 0.0012 0.0007 0.0013 PET_PEESE_Drift -0.0206 0.0048 0.0010 -0.0126 PET_PEESE_SE 0.0013 0.0012 0.0008 0.0013 WLS_Drift -0.0219 0.0053 0.0024 -0.0133 WLS_SE 0.0016 0.0012 0.0007 0.0015 $estimates$`Egger's tests` V1toV1 V2toV1 V1toV2 V2toV2 Egger's b0 -3.9450 1.4756 1.0961 -4.9811 SE(b0) 0.5038 0.5854 0.3512 0.5145 T -7.8297 2.5207 3.1211 -9.6814 p 0.0000 0.0152 0.0031 0.0000 $estimates$`Z-Curve 2.0 Results:` $estimates$`Z-Curve 2.0 Results:`$`Z-Curve 2.0 analysis of V1toV1` Call: zcurve::zcurve(z = tmp1) model: EM via EM Estimate l.CI u.CI ERR 0.978 0.900 1.000 EDR 0.710 0.377 1.000 Model converged in 23 + 64 iterations Error in stats::prop.test(x$model$N_sig, x$model$N_all, conf.level = conf.level) : 'conf.level' must be a single number between 0 and 1 Calls: summary ... print.default -> -> print.summary.zcurve -> Execution halted