# Basic tests ------------------------------------------------------------------ # known answers test_that("gain_curve() matches known result", { df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")), estimate = c(.9, .8, .7, .68, .5) ) # caret::lift(truth ~ estimate, df) perc_found <- c(0, 33.3333333333333, 66.6666666666667, 66.6666666666667, 100, 100) expect_s3_class(gain_curve(df, truth, estimate), "gain_df") expect_equal(gain_curve(df, truth, estimate)$.percent_found, perc_found) }) test_that("error handling", { df <- data.frame(truth = 1, estimate = factor("x")) expect_snapshot( error = TRUE, gain_curve(df, truth, estimate) ) }) test_that("quasiquotation works", { df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")), estimate = c(.9, .8, .7, .68, .5) ) tru <- as.name("truth") expect_no_error(gain_curve(df, !!tru, estimate)) expect_no_error(gain_curve(df, "truth", estimate)) }) # ------------------------------------------------------------------------------ test_that("`event_level = 'second'` works", { df <- two_class_example df_rev <- df df_rev$truth <- stats::relevel(df_rev$truth, "Class2") expect_equal( gain_curve_vec(df$truth, df$Class1), gain_curve_vec(df_rev$truth, df_rev$Class1, event_level = "second") ) }) # Duplicates ------------------------------------------------------------------- test_that("duplicates are removed", { # known answer dup_estimate <- c(.9, .9, .7, .68, .68) dup_truth <- factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")) dup_df <- data.frame(estimate = dup_estimate, truth = dup_truth) gain_df <- gain_curve(dup_df, truth, estimate) expect_equal(nrow(gain_df), 4L) # .n_events should be 2 for the 2 .9+Yes predictions expect_equal(gain_df$.n_events[2], 2) }) test_that("ordering of `truth` values within duplicated `estimate` groups doesn't affect the result", { dup_estimate <- c(.9, .9, .7, .68, .68) dup_truth <- factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")) dup_df1 <- data.frame(estimate = dup_estimate, truth = dup_truth) # Flip the order of the .68 estimate values # From c(Yes, No) to c(No, Yes) dup_df2 <- dup_df1[c(1, 2, 3, 5, 4), ] curve1 <- gain_curve(dup_df1, truth, estimate) curve2 <- gain_curve(dup_df2, truth, estimate) # If we didn't take unique values, these would generate different curves # and therefore different plots expect_identical(curve1, curve2) }) # Multiclass ------------------------------------------------------------------- test_that("Multiclass structure is correct", { res_gain <- gain_curve(hpc_cv, obs, VF:L) expect_true(".level" %in% colnames(res_gain)) expect_s3_class(res_gain, "gain_df") }) test_that("Grouped structure is correct", { hpc_g <- dplyr::group_by(hpc_cv, Resample) res_gain <- gain_curve(hpc_g, obs, VF:L) expect_true("Resample" %in% colnames(res_gain)) expect_s3_class(res_gain, "grouped_gain_df") }) # Case weights ----------------------------------------------------------------- test_that("gain_curve() works with case weights (ideally, frequency weights)", { df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")), estimate = c(.9, .8, .7, .68, .5), weight = c(2, 1, 1, 3, 2) ) out <- gain_curve(df, truth, estimate, case_weights = weight) # Manually computed and verified expect <- dplyr::tibble( .n = c(0, 2, 3, 4, 7, 9), .n_events = c(0, 2, 3, 3, 6, 6), .percent_tested = .n / 9 * 100, .percent_found = .n_events / 6 * 100 ) class(expect) <- class(out) expect_s3_class(out, "gain_df") expect_identical(out, expect) }) test_that("gain_curve() works with case weights and multiclass (ideally, frequency weights)", { df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Maybe", "Yes", "Maybe", "No"), levels = c("Yes", "No", "Maybe")), Yes = c(.9, .8, .7, .68, .5, .7, .3), No = c(.05, .05, .2, .2, .2, .1, .6), Maybe = c(.05, .15, .1, .12, .3, .2, .1), weight = c(2, 1, 1, 3, 2, 5, 2) ) out <- gain_curve(df, truth, Yes, No, Maybe, case_weights = weight) # Manually computed and verified expect <- dplyr::tibble( .level = c( rep("Yes", 7), rep("No", 5), rep("Maybe", 7) ), .n = c( 0, 2, 3, 9, 12, 14, 16, 0, 2, 8, 13, 16, 0, 2, 7, 8, 11, 14, 16 ), .n_events = c( 0, 2, 3, 3, 3, 5, 5, 0, 2, 3, 3, 3, 0, 0, 5, 5, 8, 8, 8 ) ) expect <- dplyr::group_by(expect, .level) expect <- dplyr::mutate( expect, .percent_tested = .n / max(.n) * 100, .percent_found = .n_events / max(.n_events) * 100 ) expect <- dplyr::ungroup(expect) class(expect) <- class(out) expect_s3_class(out, "gain_df") expect_identical(out, expect) }) test_that("gain_curve() with case weights scales `.n` and `.n_events`", { skip_if_not_installed("ggplot2") # This is required for the `autoplot()` method df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")), estimate = c(.9, .8, .7, .68, .5), weight = c(2, 1, 1, 3, 2) ) out <- gain_curve(df, truth, estimate, case_weights = weight) plot <- ggplot2::autoplot(out) data <- ggplot2::ggplot_build(plot) grey_overlay_data <- data$data[[1]] expect_equal(grey_overlay_data$x, c(0, 2 / 3 * 100, 100)) expect_equal(grey_overlay_data$y, c(0, 100, 100)) }) test_that("gain_curve() works with hardhat case weights", { df <- data.frame( truth = factor(c("Yes", "Yes", "No", "Yes", "No"), levels = c("Yes", "No")), estimate = c(.9, .8, .7, .68, .5), weight = c(2, 1, 1, 3, 2) ) curve1 <- gain_curve(df, truth, estimate, case_weights = weight) df$weight <- hardhat::frequency_weights(df$weight) curve2 <- gain_curve(df, truth, estimate, case_weights = weight) expect_identical(curve1, curve2) }) test_that("errors with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) fct_truth <- two_class_example$truth fct_truth[1] <- NA estimate <- two_class_example$Class1 expect_snapshot( error = TRUE, gain_curve_vec_vec(cp_truth, estimate) ) })