test_that("known corner cases are correct", { # first value - tp = 1 truth <- factor("a", levels = c("a", "b")) estimate <- .9 df <- data.frame(truth, estimate) expect_equal( average_precision(df, truth, estimate)$.estimate, 1 ) # With the recall == 0 case precision value # defined to be precision == 1, we also expect # these to match pr_auc() expect_equal( average_precision(df, truth, estimate)$.estimate, pr_auc(df, truth, estimate)$.estimate ) # first value - fp = 1, no `truth` events truth <- factor("b", levels = c("a", "b")) estimate <- .9 df <- data.frame(truth, estimate) expect_snapshot(out <- average_precision(df, truth, estimate)$.estimate) expect_identical(out, NaN) # Same as pr_auc() expect_snapshot(out <- average_precision(df, truth, estimate)$.estimate) expect_snapshot(expect <- pr_auc(df, truth, estimate)$.estimate) expect_identical(out, expect) }) test_that("`event_level = 'second'` works", { df <- two_class_example df_rev <- df df_rev$truth <- stats::relevel(df_rev$truth, "Class2") expect_equal( average_precision_vec(df$truth, df$Class1), average_precision_vec(df_rev$truth, df_rev$Class1, event_level = "second") ) }) test_that("Two class average precision matches sklearn", { py <- read_pydata("py-average-precision") expect_equal( average_precision(two_class_example, truth, Class1)[[".estimate"]], py$binary ) }) test_that("Two class weighted average precision matches sklearn", { py <- read_pydata("py-average-precision") two_class_example$weight <- read_weights_two_class_example() expect_equal( average_precision(two_class_example, truth, Class1, case_weights = weight)[[".estimate"]], py$case_weight$binary ) }) test_that("Multiclass average precision matches sklearn", { py <- read_pydata("py-average-precision") expect_equal( average_precision(hpc_cv, obs, VF:L, estimator = "macro")[[".estimate"]], py$macro ) expect_equal( average_precision(hpc_cv, obs, VF:L, estimator = "macro_weighted")[[".estimate"]], py$macro_weighted ) }) test_that("Multiclass weighted average precision matches sklearn", { py <- read_pydata("py-average-precision") hpc_cv$weight <- read_weights_hpc_cv() expect_equal( average_precision(hpc_cv, obs, VF:L, estimator = "macro", case_weights = weight)[[".estimate"]], py$case_weight$macro ) expect_equal( average_precision(hpc_cv, obs, VF:L, estimator = "macro_weighted", case_weights = weight)[[".estimate"]], py$case_weight$macro_weighted ) }) test_that("works with hardhat case weights", { df <- two_class_example imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( average_precision_vec(df$truth, df$Class1, case_weights = imp_wgt) ) expect_no_error( average_precision_vec(df$truth, df$Class1, case_weights = freq_wgt) ) }) test_that("errors with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) fct_truth <- two_class_example$truth fct_truth[1] <- NA estimate <- two_class_example$Class1 expect_snapshot( error = TRUE, average_precision_vec(cp_truth, estimate) ) })