test_that("Traditional R^2", { ex_dat <- generate_numeric_test_data() not_na <- !is.na(ex_dat$pred_na) expect_equal( rsq_trad(ex_dat, truth = "obs", estimate = "pred")[[".estimate"]], 1 - ( sum((ex_dat$obs - ex_dat$pred)^2) / sum((ex_dat$obs - mean(ex_dat$obs))^2) ) ) expect_equal( rsq_trad(ex_dat, truth = "obs", estimate = "pred_na")[[".estimate"]], 1 - ( sum((ex_dat$obs[not_na] - ex_dat$pred[not_na])^2) / sum((ex_dat$obs[not_na] - mean(ex_dat$obs[not_na]))^2) ) ) expect_equal( rsq_trad(ex_dat, truth = "obs", estimate = rand)[[".estimate"]], 1 - ( sum((ex_dat$obs - ex_dat$rand)^2) / sum((ex_dat$obs - mean(ex_dat$obs))^2) ) ) expect_equal( rsq_trad(ex_dat, obs, rand_na)[[".estimate"]], 1 - ( sum((ex_dat$obs[not_na] - ex_dat$rand[not_na])^2) / sum((ex_dat$obs[not_na] - mean(ex_dat$obs[not_na]))^2) ) ) }) test_that("Weighted results are the same as scikit-learn", { solubility_test$weights <- read_weights_solubility_test() expect_equal( rsq_trad(solubility_test, solubility, prediction, case_weights = weights)[[".estimate"]], read_pydata("py-rsq-trad")$case_weight ) }) test_that("works with hardhat case weights", { solubility_test$weights <- floor(read_weights_solubility_test()) df <- solubility_test imp_wgt <- hardhat::importance_weights(df$weights) freq_wgt <- hardhat::frequency_weights(df$weights) expect_no_error( rsq_trad_vec(df$solubility, df$prediction, case_weights = imp_wgt) ) expect_no_error( rsq_trad_vec(df$solubility, df$prediction, case_weights = freq_wgt) ) })