test_that("rpiq", { ex_dat <- generate_numeric_test_data() not_na <- !is.na(ex_dat$pred_na) # Note: Uses `quantile(type = 7)` when case weights aren't provided expect_equal( rpiq(ex_dat, truth = "obs", estimate = "pred")[[".estimate"]], stats::IQR(ex_dat$obs) / sqrt(mean((ex_dat$obs - ex_dat$pred)^2)) ) expect_equal( rpiq(ex_dat, truth = "obs", estimate = "pred_na")[[".estimate"]], stats::IQR(ex_dat$obs[not_na]) / sqrt(mean((ex_dat$obs[not_na] - ex_dat$pred[not_na])^2)) ) }) test_that("case weights are applied", { solubility_test$weights <- read_weights_solubility_test() expect_equal( rpiq(solubility_test, solubility, prediction, case_weights = weights)[[".estimate"]], 3.401406885440771965534 ) }) test_that("works with hardhat case weights", { count_results <- data_counts()$basic count_results$weights <- c(1, 2, 1, 1, 2, 1) df <- count_results imp_wgt <- hardhat::importance_weights(df$weights) freq_wgt <- hardhat::frequency_weights(df$weights) expect_no_error( rpiq_vec(df$count, df$pred, case_weights = imp_wgt) ) expect_no_error( rpiq_vec(df$count, df$pred, case_weights = freq_wgt) ) })