test_that("Mean Absolute Percentage Error", { ex_dat <- generate_numeric_test_data() not_na <- !is.na(ex_dat$pred_na) expect_equal( mape(ex_dat, truth = "obs", estimate = "pred")[[".estimate"]], 100 * mean(abs((ex_dat$obs - ex_dat$pred) / ex_dat$obs)) ) expect_equal( mape(ex_dat, obs, pred_na)[[".estimate"]], 100 * mean(abs((ex_dat$obs[not_na] - ex_dat$pred[not_na]) / ex_dat$obs[not_na])) ) }) test_that("`mape()` computes expected values when singular `truth` is `0` (#271)", { expect_identical( mape_vec(truth = 0, estimate = 1), Inf ) expect_identical( mape_vec(truth = 0, estimate = -1), Inf ) expect_identical( mape_vec(truth = 0, estimate = 0), NaN ) }) test_that("Weighted results are the same as scikit-learn", { solubility_test$weights <- read_weights_solubility_test() zero_solubility <- solubility_test$solubility == 0 solubility_test_not_zero <- solubility_test[!zero_solubility, ] expect_equal( mape(solubility_test_not_zero, solubility, prediction, case_weights = weights)[[".estimate"]], read_pydata("py-mape")$case_weight * 100 ) }) test_that("works with hardhat case weights", { solubility_test$weights <- floor(read_weights_solubility_test()) df <- solubility_test imp_wgt <- hardhat::importance_weights(df$weights) freq_wgt <- hardhat::frequency_weights(df$weights) expect_no_error( mape_vec(df$solubility, df$prediction, case_weights = imp_wgt) ) expect_no_error( mape_vec(df$solubility, df$prediction, case_weights = freq_wgt) ) })