test_that("mean absolute error", { ex_dat <- generate_numeric_test_data() not_na <- !is.na(ex_dat$pred_na) expect_equal( mae(ex_dat, truth = "obs", estimate = "pred")[[".estimate"]], mean(abs(ex_dat$obs - ex_dat$pred)) ) expect_equal( mae(ex_dat, obs, pred_na)[[".estimate"]], mean(abs(ex_dat$obs[not_na] - ex_dat$pred[not_na])) ) }) test_that("Weighted results are the same as scikit-learn", { solubility_test$weights <- read_weights_solubility_test() expect_equal( mae(solubility_test, solubility, prediction, case_weights = weights)[[".estimate"]], read_pydata("py-mae")$case_weight ) }) test_that("works with hardhat case weights", { solubility_test$weights <- floor(read_weights_solubility_test()) df <- solubility_test imp_wgt <- hardhat::importance_weights(df$weights) freq_wgt <- hardhat::frequency_weights(df$weights) expect_no_error( mae_vec(df$solubility, df$prediction, case_weights = imp_wgt) ) expect_no_error( mae_vec(df$solubility, df$prediction, case_weights = freq_wgt) ) })