test_that("Two class", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( sens(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], 231 / 258 ) expect_equal( sens(pathology, estimate = scan, truth = pathology)[[".estimate"]], 231 / 258 ) expect_equal( sens(pathology, pathology, scan)[[".estimate"]], 231 / 258 ) expect_equal( sens(path_tbl)[[".estimate"]], 231 / 258 ) expect_equal( sens(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]], 230 / 256 ) expect_equal( sens(as.matrix(path_tbl))[[".estimate"]], 231 / 258 ) expect_equal( sens(pathology, pathology, scan_na, na_rm = FALSE)[[".estimate"]], NA_real_ ) }) test_that("`event_level = 'second'` works", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- stats::relevel(df_rev$pathology, "norm") df_rev$scan <- stats::relevel(df_rev$scan, "norm") expect_equal( sens_vec(df$pathology, df$scan), sens_vec(df_rev$pathology, df_rev$scan, event_level = "second") ) }) # ------------------------------------------------------------------------------ test_that("Three class", { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() # sens = recall expect_equal( sens(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(recall_binary) ) expect_equal( sens(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(recall_binary) ) expect_equal( sens(multi_ex, estimator = "micro")[[".estimate"]], with(micro, sum(tp) / sum(tp + fp)) ) }) # ------------------------------------------------------------------------------ test_that("Binary `sens()` returns `NA` with a warning when undefined (tp + fn = 0) (#98)", { levels <- c("a", "b") truth <- factor(c("b", "b"), levels = levels) estimate <- factor(c("a", "b"), levels = levels) expect_snapshot(out <- sens_vec(truth, estimate)) expect_identical(out, NA_real_) }) test_that("Multiclass `sens()` returns averaged value with `NA`s removed + a warning when undefined (tp + fn = 0) (#98)", { levels <- c("a", "b", "c", "d") # When `d` is the event we get sens = 0.5 = (tp = 1, fn = 1) # When `a` is the event we get sens = 1 = (tp = 1, fn = 0) # When `b` is the event we get a warning = NA = (tp = 0, fn = 0) # When `c` is the event we get a warning = NA = (tp = 0, fn = 0) truth <- factor(c("a", "d", "d"), levels = levels) estimate <- factor(c("a", "d", "c"), levels = levels) expect_snapshot(out <- sens_vec(truth, estimate)) expect_identical(out, 0.75) }) test_that("`NA` is still returned if there are some undefined sens values but `na.rm = FALSE`", { levels <- c("a", "b", "c", "d") truth <- factor(c("a", "d", "d"), levels = levels) estimate <- factor(c("a", NA, "c"), levels = levels) expect_equal(sens_vec(truth, estimate, na_rm = FALSE), NA_real_) expect_warning(sens_vec(truth, estimate, na_rm = FALSE), NA) }) # ------------------------------------------------------------------------------ test_that("Two class - sklearn equivalent", { # Same as recall py_res <- read_pydata("py-recall") r_metric <- sens expect_equal( r_metric(two_class_example, truth, predicted)[[".estimate"]], py_res$binary ) }) test_that("Multi class - sklearn equivalent", { # Same as recall py_res <- read_pydata("py-recall") r_metric <- sens expect_equal( r_metric(hpc_cv, obs, pred)[[".estimate"]], py_res$macro ) expect_equal( r_metric(hpc_cv, obs, pred, "micro")[[".estimate"]], py_res$micro ) expect_equal( r_metric(hpc_cv, obs, pred, "macro_weighted")[[".estimate"]], py_res$weighted ) }) test_that("Two class weighted - sklearn equivalent", { # Same as recall py_res <- read_pydata("py-recall") r_metric <- sens two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) }) test_that("Multi class weighted - sklearn equivalent", { # Same as recall py_res <- read_pydata("py-recall") r_metric <- sens hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]], py_res$case_weight$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro", case_weights = weights)[[".estimate"]], py_res$case_weight$micro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", case_weights = weights)[[".estimate"]], py_res$case_weight$weighted ) }) # ------------------------------------------------------------------------------ test_that("`sensitivity()` has a metric name unique to it (#232)", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_identical( sens(pathology, truth = "pathology", estimate = "scan")[[".metric"]], "sens" ) expect_identical( sensitivity(pathology, truth = "pathology", estimate = "scan")[[".metric"]], "sensitivity" ) expect_identical( sens(path_tbl)[[".metric"]], "sens" ) expect_identical( sensitivity(path_tbl)[[".metric"]], "sensitivity" ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( sensitivity_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( sensitivity_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( sensitivity_vec(fct_truth, cp_estimate), sensitivity_vec(fct_truth, fct_estimate) ) expect_identical( sensitivity_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, sensitivity_vec(cp_truth, cp_estimate) ) })