test_that("Two class - Powers paper", { lst <- data_powers() tabl_2_1 <- lst$tabl_2_1 df_2_1 <- lst$df_2_1 expect_equal( recall(df_2_1, truth = "truth", estimate = "prediction")[[".estimate"]], 30 / 60 ) expect_equal( recall(tabl_2_1)[[".estimate"]], 30 / 60 ) expect_equal( recall(df_2_1, truth = truth, estimate = pred_na)[[".estimate"]], 26 / (26 + 29) ) }) test_that("`event_level = 'second'` works", { lst <- data_powers() df <- lst$df_2_1 df_rev <- df df_rev$truth <- stats::relevel(df_rev$truth, "Irrelevant") df_rev$prediction <- stats::relevel(df_rev$prediction, "Irrelevant") expect_equal( recall_vec(df$truth, df$prediction), recall_vec(df_rev$truth, df_rev$prediction, event_level = "second") ) }) # ------------------------------------------------------------------------------ test_that("Binary `recall()` returns `NA` with a warning when undefined (tp + fn = 0) (#98)", { levels <- c("a", "b") truth <- factor(c("b", "b"), levels = levels) estimate <- factor(c("a", "b"), levels = levels) expect_snapshot(out <- recall_vec(truth, estimate)) expect_identical(out, NA_real_) }) test_that("Multiclass `recall()` returns averaged value with `NA`s removed + a warning when undefined (tp + fn = 0) (#98)", { levels <- c("a", "b", "c", "d") # When `d` is the event we get recall = 0.5 = (tp = 1, fn = 1) # When `a` is the event we get recall = 1 = (tp = 1, fn = 0) # When `b` is the event we get a warning = NA = (tp = 0, fn = 0) # When `c` is the event we get a warning = NA = (tp = 0, fn = 0) truth <- factor(c("a", "d", "d"), levels = levels) estimate <- factor(c("a", "d", "c"), levels = levels) expect_snapshot(out <- recall_vec(truth, estimate)) expect_identical(out, 0.75) }) test_that("`NA` is still returned if there are some undefined recall values but `na.rm = FALSE`", { levels <- c("a", "b", "c", "d") truth <- factor(c("a", "d", "d"), levels = levels) estimate <- factor(c("a", NA, "c"), levels = levels) expect_equal(recall_vec(truth, estimate, na_rm = FALSE), NA_real_) expect_warning(recall_vec(truth, estimate, na_rm = FALSE), NA) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( recall_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( recall_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( recall_vec(fct_truth, cp_estimate), recall_vec(fct_truth, fct_estimate) ) expect_identical( recall_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, recall_vec(cp_truth, cp_estimate) ) }) # sklearn compare -------------------------------------------------------------- test_that("Two class - sklearn equivalent", { py_res <- read_pydata("py-recall") r_metric <- recall expect_equal( r_metric(two_class_example, truth, predicted)[[".estimate"]], py_res$binary ) }) test_that("Multi class - sklearn equivalent", { py_res <- read_pydata("py-recall") r_metric <- recall expect_equal( r_metric(hpc_cv, obs, pred)[[".estimate"]], py_res$macro ) expect_equal( r_metric(hpc_cv, obs, pred, "micro")[[".estimate"]], py_res$micro ) expect_equal( r_metric(hpc_cv, obs, pred, "macro_weighted")[[".estimate"]], py_res$weighted ) }) test_that("Two class case weighted - sklearn equivalent", { py_res <- read_pydata("py-recall") r_metric <- recall two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) }) test_that("Multi class case weighted - sklearn equivalent", { py_res <- read_pydata("py-recall") r_metric <- recall hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]], py_res$case_weight$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro", case_weights = weights)[[".estimate"]], py_res$case_weight$micro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", case_weights = weights)[[".estimate"]], py_res$case_weight$weighted ) })