test_that("npv", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( npv(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], 2 / 3, tolerance = .001 ) expect_equal( npv(path_tbl)[[".estimate"]], 2 / 3, tolerance = .001 ) expect_equal( npv(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]], 0.67088, tolerance = .001 ) expect_equal( npv(pathology, truth = pathology, estimate = "scan", prevalence = .5)[[".estimate"]], 0.85714, tolerance = .001 ) }) test_that("`event_level = 'second'` works", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- stats::relevel(df_rev$pathology, "norm") df_rev$scan <- stats::relevel(df_rev$scan, "norm") expect_equal( npv_vec(df$pathology, df$scan), npv_vec(df_rev$pathology, df_rev$scan, event_level = "second") ) }) # ------------------------------------------------------------------------------ test_that("Three class", { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() micro$prev <- (micro$tp + micro$fn) / (micro$p + micro$n) expect_equal( npv(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(npv_binary) ) expect_equal( npv(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(npv_binary) ) expect_equal( npv(multi_ex, estimator = "micro")[[".estimate"]], with( micro, (sum(tn) / sum(n) * sum((1 - prev))) / ((1 - sum(tp) / sum(p)) * sum(prev) + (sum(tn) / sum(n) * sum((1 - prev)))) ) ) # Prevalence defined by the user. Defined once for all levels? expect_equal( npv(multi_ex, estimator = "micro", prevalence = .4)[[".estimate"]], with( micro, (sum(tn) / sum(n) * sum((1 - .4))) / ((1 - sum(tp) / sum(p)) * sum(.4) + (sum(tn) / sum(n) * sum((1 - .4)))) ) ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( npv_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( npv_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( npv_vec(fct_truth, cp_estimate), npv_vec(fct_truth, fct_estimate) ) expect_identical( npv_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, accuracy_vec(cp_truth, cp_estimate) ) }) # ------------------------------------------------------------------------------ test_that("Two class weighted - sklearn equivalent", { py_res <- read_pydata("py-npv") r_metric <- npv two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) }) test_that("Multi class weighted - sklearn equivalent", { py_res <- read_pydata("py-npv") r_metric <- npv hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro", case_weights = weights)[[".estimate"]], py_res$case_weight$macro ) })