test_that("Two class", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( mcc(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], ((231 * 54) - (32 * 27)) / sqrt((231 + 32) * (231 + 27) * (54 + 32) * (54 + 27)) ) expect_equal( mcc(path_tbl)[[".estimate"]], ((231 * 54) - (32 * 27)) / sqrt((231 + 32) * (231 + 27) * (54 + 32) * (54 + 27)) ) expect_equal( mcc(pathology, truth = pathology, estimate = scan_na)[[".estimate"]], ((230 * 53) - (32 * 26)) / sqrt((230 + 32) * (230 + 26) * (53 + 32) * (53 + 26)) ) }) test_that("two class produces identical results regardless of level order", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- stats::relevel(df_rev$pathology, "norm") df_rev$scan <- stats::relevel(df_rev$scan, "norm") expect_equal( mcc_vec(df$pathology, df$scan), mcc_vec(df_rev$pathology, df_rev$scan) ) }) test_that("doesn't integer overflow (#108)", { x <- matrix(c(50122L, 50267L, 49707L, 49904L), ncol = 2L, nrow = 2L) expect_equal( mcc(x)[[".estimate"]], 0.00026665430738672 ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( mcc_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( mcc_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( mcc_vec(fct_truth, cp_estimate), mcc_vec(fct_truth, fct_estimate) ) expect_identical( mcc_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, mcc_vec(cp_truth, cp_estimate) ) }) # sklearn compare -------------------------------------------------------------- test_that("Two class - sklearn equivalent", { py_res <- read_pydata("py-mcc") r_metric <- mcc expect_equal( r_metric(two_class_example, truth, predicted)[[".estimate"]], py_res$binary ) }) test_that("Multi class - sklearn equivalent", { py_res <- read_pydata("py-mcc") r_metric <- mcc expect_equal( r_metric(hpc_cv, obs, pred)[[".estimate"]], py_res$multiclass ) }) test_that("Two class case weighted - sklearn equivalent", { py_res <- read_pydata("py-mcc") r_metric <- mcc two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) }) test_that("Multi class case weighted - sklearn equivalent", { py_res <- read_pydata("py-mcc") r_metric <- mcc hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]], py_res$case_weight$multiclass ) })