test_that("two class produces identical results regardless of level order", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- stats::relevel(df_rev$pathology, "norm") df_rev$scan <- stats::relevel(df_rev$scan, "norm") expect_equal( kap_vec(df$pathology, df$scan), kap_vec(df_rev$pathology, df_rev$scan) ) }) test_that("kap errors with wrong `weighting`", { lst <- data_three_class() three_class <- lst$three_class expect_snapshot( error = TRUE, kap(three_class, truth = "obs", estimate = "pred", weighting = 1) ) expect_snapshot( error = TRUE, kap(three_class, truth = "obs", estimate = "pred", weighting = "not right") ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( kap_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( kap_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( kap_vec(fct_truth, cp_estimate), kap_vec(fct_truth, fct_estimate) ) expect_identical( kap_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, kap_vec(cp_truth, cp_estimate) ) }) # ------------------------------------------------------------------------------ # expected results from e1071::classAgreement(three_class_tb)$kappa # e1071::classAgreement(table(three_class$pred_na, three_class$obs))$kappa test_that("Three class", { lst <- data_three_class() three_class <- lst$three_class three_class_tb <- lst$three_class_tb expect_equal( kap(three_class, truth = "obs", estimate = "pred")[[".estimate"]], 0.05 ) expect_equal( kap(three_class_tb)[[".estimate"]], 0.05 ) expect_equal( kap(as.matrix(three_class_tb))[[".estimate"]], 0.05 ) expect_equal( kap(three_class, obs, pred_na)[[".estimate"]], -0.1570248, tolerance = 0.000001 ) expect_equal( colnames(kap(three_class, truth = "obs", estimate = "pred")), c(".metric", ".estimator", ".estimate") ) expect_equal( kap(three_class, truth = "obs", estimate = "pred")[[".metric"]], "kap" ) }) # sklearn compare -------------------------------------------------------------- test_that("Two class - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap expect_equal( r_metric(two_class_example, truth, predicted)[[".estimate"]], py_res$binary ) }) test_that("Multi class - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap expect_equal( r_metric(hpc_cv, obs, pred)[[".estimate"]], py_res$multiclass ) }) test_that("linear weighting - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap expect_equal( r_metric(two_class_example, truth, predicted, weighting = "linear")[[".estimate"]], py_res$linear_binary ) expect_equal( r_metric(hpc_cv, obs, pred, weighting = "linear")[[".estimate"]], py_res$linear_multiclass ) }) test_that("quadratic weighting - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap expect_equal( r_metric(two_class_example, truth, predicted, weighting = "quadratic")[[".estimate"]], py_res$quadratic_binary ) expect_equal( r_metric(hpc_cv, obs, pred, weighting = "quadratic")[[".estimate"]], py_res$quadratic_multiclass ) }) test_that("Two class case weighted - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) }) test_that("Multi class case weighted - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]], py_res$case_weight$multiclass ) }) test_that("linear weighting case weighted - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap two_class_example$weights <- read_weights_two_class_example() hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(two_class_example, truth, predicted, weighting = "linear", case_weights = weights)[[".estimate"]], py_res$case_weight$linear_binary ) expect_equal( r_metric(hpc_cv, obs, pred, weighting = "linear", case_weights = weights)[[".estimate"]], py_res$case_weight$linear_multiclass ) }) test_that("quadratic weighting case weighted - sklearn equivalent", { py_res <- read_pydata("py-kap") r_metric <- kap two_class_example$weights <- read_weights_two_class_example() hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(two_class_example, truth, predicted, weighting = "quadratic", case_weights = weights)[[".estimate"]], py_res$case_weight$quadratic_binary ) expect_equal( r_metric(hpc_cv, obs, pred, weighting = "quadratic", case_weights = weights)[[".estimate"]], py_res$case_weight$quadratic_multiclass ) })