test_that("Two class", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( j_index(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], (231 / 258) + (54 / 86) - 1 ) expect_equal( j_index(path_tbl)[[".estimate"]], (231 / 258) + (54 / 86) - 1 ) expect_equal( j_index(pathology, pathology, scan)[[".estimate"]], (231 / 258) + (54 / 86) - 1 ) }) test_that("`event_level = 'second'` works", { lst <- data_altman() df <- lst$pathology df_rev <- df df_rev$pathology <- stats::relevel(df_rev$pathology, "norm") df_rev$scan <- stats::relevel(df_rev$scan, "norm") expect_equal( j_index_vec(df$pathology, df$scan), j_index_vec(df_rev$pathology, df_rev$scan, event_level = "second") ) }) # ------------------------------------------------------------------------------ test_that("Three class", { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() expect_equal( j_index(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(j_index_binary) ) expect_equal( j_index(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(j_index_binary) ) expect_equal( j_index(multi_ex, estimator = "micro")[[".estimate"]], with(micro, sum(tp) / sum(p) + sum(tn) / sum(n) - 1) ) }) # ------------------------------------------------------------------------------ test_that("two class with case weights is correct", { df <- data.frame( truth = factor(c("x", "x", "y"), levels = c("x", "y")), estimate = factor(c("x", "y", "x"), levels = c("x", "y")), case_weights = c(1L, 10L, 2L) ) expect_identical( j_index(df, truth, estimate, case_weights = case_weights)[[".estimate"]], -10 / 11 ) }) # ------------------------------------------------------------------------------ test_that("Binary `j_index()` returns `NA` with a warning when sensitivity is undefined (tp + fn = 0) (#265)", { levels <- c("a", "b") truth <- factor(c("b", "b"), levels = levels) estimate <- factor(c("a", "b"), levels = levels) expect_snapshot( out <- j_index_vec(truth, estimate) ) expect_identical(out, NA_real_) }) test_that("Binary `j_index()` returns `NA` with a warning when specificity is undefined (tn + fp = 0) (#265)", { levels <- c("a", "b") truth <- factor("a", levels = levels) estimate <- factor("b", levels = levels) expect_snapshot( out <- j_index_vec(truth, estimate) ) expect_identical(out, NA_real_) }) test_that("Multiclass `j_index()` returns averaged value with `NA`s removed + a warning when sensitivity is undefined (tp + fn = 0) (#265)", { levels <- c("a", "b", "c") truth <- factor(c("a", "b", "b"), levels = levels) estimate <- factor(c("a", "b", "c"), levels = levels) expect_snapshot( out <- j_index_vec(truth, estimate) ) expect_identical(out, 3 / 4) }) test_that("Multiclass `j_index()` returns averaged value with `NA`s removed + a warning when specificity is undefined (tn + fp = 0) (#265)", { levels <- c("a", "b", "c") truth <- factor(c("a", "a", "a"), levels = levels) estimate <- factor(c("a", "b", "c"), levels = levels) expect_snapshot( out <- j_index_vec(truth, estimate) ) # In this case it removes everything and we get a NaN, # I can't think of any way to get a spec warning and not have this expect_identical(out, NaN) }) test_that("`NA` is still returned if there are some undefined sensitivity values but `na_rm = FALSE`", { levels <- c("a", "b", "c") truth <- factor(c("a", "b", "b"), levels = levels) estimate <- factor(c("a", NA, "c"), levels = levels) expect_equal(j_index_vec(truth, estimate, na_rm = FALSE), NA_real_) expect_warning(j_index_vec(truth, estimate, na_rm = FALSE), NA) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( j_index_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( j_index_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( j_index_vec(fct_truth, cp_estimate), j_index_vec(fct_truth, fct_estimate) ) expect_identical( j_index_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, j_index_vec(cp_truth, cp_estimate) ) })