test_that("Two class - Powers paper", { lst <- data_powers() tabl_2_1 <- lst$tabl_2_1 df_2_1 <- lst$df_2_1 expect_equal( f_meas(df_2_1, truth = "truth", estimate = "prediction")[[".estimate"]], 0.5882353, tolerance = 0.0001 ) expect_equal( f_meas(tabl_2_1)[[".estimate"]], 0.5882353, tolerance = 0.0001 ) expect_equal( f_meas(df_2_1, truth = truth, estimate = pred_na)[[".estimate"]], 0.5652174, tolerance = 0.0001 ) }) test_that("`event_level = 'second'` works", { lst <- data_powers() df <- lst$df_2_1 df_rev <- df df_rev$truth <- stats::relevel(df_rev$truth, "Irrelevant") df_rev$prediction <- stats::relevel(df_rev$prediction, "Irrelevant") expect_equal( f_meas_vec(df$truth, df$prediction), f_meas_vec(df_rev$truth, df_rev$prediction, event_level = "second") ) }) # ------------------------------------------------------------------------------ # Issue #77 test_that("`NA` values propagate from binary `precision()`", { truth <- factor(c(rep("a", 2), rep("b", 2))) estimate <- factor(rep("b", length(truth)), levels(truth)) expect_snapshot({ out <- precision_vec(truth, estimate) expect <- f_meas_vec(truth, estimate) }) expect_identical(out, expect) }) test_that("`NA` values propagate from binary `recall()`", { estimate <- factor(c(rep("a", 2), rep("b", 2))) truth <- factor(rep("b", length(estimate)), levels(estimate)) expect_snapshot({ out <- recall_vec(truth, estimate) expect <- f_meas_vec(truth, estimate) }) expect_identical(out, expect) }) # ------------------------------------------------------------------------------ test_that("Binary `f_meas()` returns `NA` with a warning when recall is undefined (tp + fn = 0) (#98)", { levels <- c("a", "b") truth <- factor(c("b", "b"), levels = levels) estimate <- factor(c("a", "b"), levels = levels) expect_snapshot( out <- f_meas_vec(truth, estimate) ) expect_identical(out, NA_real_) }) test_that("Binary `f_meas()` returns `NA` with a warning when precision is undefined (tp + fp = 0) (#98)", { levels <- c("a", "b") truth <- factor("a", levels = levels) estimate <- factor("b", levels = levels) expect_snapshot( out <- f_meas_vec(truth, estimate) ) expect_identical(out, NA_real_) }) test_that("Multiclass `f_meas()` returns averaged value with `NA`s removed + a warning when recall is undefined (tp + fn = 0) (#98)", { levels <- c("a", "b", "c") truth <- factor(c("a", "b", "b"), levels = levels) estimate <- factor(c("a", "b", "c"), levels = levels) expect_snapshot( out <- f_meas_vec(truth, estimate) ) expect_identical(out, 5 / 6) }) test_that("Multiclass `f_meas()` returns averaged value with `NA`s removed + a warning when precision is undefined (tp + fn = 0) (#98)", { levels <- c("a", "b", "c") truth <- factor(c("a", "b", "c"), levels = levels) estimate <- factor(c("a", "b", "b"), levels = levels) expect_snapshot( out <- f_meas_vec(truth, estimate) ) expect_identical(out, 5 / 6) }) test_that("`NA` is still returned if there are some undefined recall values but `na.rm = FALSE`", { levels <- c("a", "b", "c") truth <- factor(c("a", "b", "b"), levels = levels) estimate <- factor(c("a", NA, "c"), levels = levels) expect_equal(f_meas_vec(truth, estimate, na_rm = FALSE), NA_real_) expect_warning(f_meas_vec(truth, estimate, na_rm = FALSE), NA) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( f_meas_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( f_meas_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( f_meas_vec(fct_truth, cp_estimate), f_meas_vec(fct_truth, fct_estimate) ) expect_identical( f_meas_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, f_meas_vec(cp_truth, cp_estimate) ) }) # sklearn compare -------------------------------------------------------------- test_that("Two class - sklearn equivalent", { py_res <- read_pydata("py-f_meas") py_res_.5 <- read_pydata("py-f_meas_beta_.5") r_metric <- f_meas expect_equal( r_metric(two_class_example, truth, predicted)[[".estimate"]], py_res$binary ) expect_equal( r_metric(two_class_example, truth, predicted, beta = .5)[[".estimate"]], py_res_.5$binary ) }) test_that("Multi class - sklearn equivalent", { py_res <- read_pydata("py-f_meas") py_res_.5 <- read_pydata("py-f_meas_beta_.5") r_metric <- f_meas expect_equal( r_metric(hpc_cv, obs, pred)[[".estimate"]], py_res$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro")[[".estimate"]], py_res$micro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro_weighted")[[".estimate"]], py_res$weighted ) expect_equal( r_metric(hpc_cv, obs, pred, beta = .5)[[".estimate"]], py_res_.5$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro", beta = .5)[[".estimate"]], py_res_.5$micro ) expect_equal( r_metric(hpc_cv, obs, pred, "macro_weighted", beta = .5)[[".estimate"]], py_res_.5$weighted ) }) test_that("Two class weighted - sklearn equivalent", { py_res <- read_pydata("py-f_meas") py_res_.5 <- read_pydata("py-f_meas_beta_.5") r_metric <- f_meas two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights, beta = .5)[[".estimate"]], py_res_.5$case_weight$binary ) }) test_that("Multi class weighted - sklearn equivalent", { py_res <- read_pydata("py-f_meas") py_res_.5 <- read_pydata("py-f_meas_beta_.5") r_metric <- f_meas hpc_cv$weights <- read_weights_hpc_cv() expect_equal( r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]], py_res$case_weight$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro", case_weights = weights)[[".estimate"]], py_res$case_weight$micro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", case_weights = weights)[[".estimate"]], py_res$case_weight$weighted ) expect_equal( r_metric(hpc_cv, obs, pred, beta = .5, case_weights = weights)[[".estimate"]], py_res_.5$case_weight$macro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "micro", beta = .5, case_weights = weights)[[".estimate"]], py_res_.5$case_weight$micro ) expect_equal( r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", beta = .5, case_weights = weights)[[".estimate"]], py_res_.5$case_weight$weighted ) })