test_that("Two class", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( detection_prevalence(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], (231 + 32) / 344 ) expect_equal( detection_prevalence(path_tbl)[[".estimate"]], (231 + 32) / 344 ) expect_equal( detection_prevalence(pathology, pathology, scan)[[".estimate"]], (231 + 32) / 344 ) }) test_that("`event_level = 'second'` works", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( detection_prevalence_vec(pathology$pathology, pathology$scan, event_level = "second"), 1 - detection_prevalence_vec(pathology$pathology, pathology$scan, event_level = "first") ) }) # ------------------------------------------------------------------------------ test_that("Three class", { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() expect_equal( detection_prevalence(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(detection_prevalence_binary) ) expect_equal( detection_prevalence(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(detection_prevalence_binary) ) expect_equal( detection_prevalence(multi_ex, estimator = "micro")[[".estimate"]], with(micro, sum(tp + fp) / sum(n + p)) ) }) # ------------------------------------------------------------------------------ test_that("two class with case weights is correct", { df <- data.frame( truth = factor(c("x", "x", "y"), levels = c("x", "y")), estimate = factor(c("x", "y", "x"), levels = c("x", "y")), case_weights = c(1L, 1L, 2L) ) expect_identical( detection_prevalence(df, truth, estimate, case_weights = case_weights)[[".estimate"]], 3 / 4 ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( detection_prevalence_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( detection_prevalence_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( detection_prevalence_vec(fct_truth, cp_estimate), detection_prevalence_vec(fct_truth, fct_estimate) ) expect_identical( detection_prevalence_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, detection_prevalence_vec(cp_truth, cp_estimate) ) })