test_that("Two class", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_equal( bal_accuracy(pathology, truth = "pathology", estimate = "scan")[[".estimate"]], (sens(path_tbl)[[".estimate"]] + spec(path_tbl)[[".estimate"]]) / 2 ) expect_equal( bal_accuracy(path_tbl)[[".estimate"]], (sens(path_tbl)[[".estimate"]] + spec(path_tbl)[[".estimate"]]) / 2 ) expect_equal( bal_accuracy(pathology, pathology, scan)[[".estimate"]], (sens(path_tbl)[[".estimate"]] + spec(path_tbl)[[".estimate"]]) / 2 ) }) test_that("works with hardhat case weights", { lst <- data_altman() df <- lst$pathology imp_wgt <- hardhat::importance_weights(seq_len(nrow(df))) freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df))) expect_no_error( bal_accuracy_vec(df$pathology, df$scan, case_weights = imp_wgt) ) expect_no_error( bal_accuracy_vec(df$pathology, df$scan, case_weights = freq_wgt) ) }) test_that("`event_level = 'second'` should be identical to 'first'", { lst <- data_altman() pathology <- lst$pathology path_tbl <- lst$path_tbl expect_identical( bal_accuracy_vec(pathology$pathology, pathology$scan, event_level = "first"), bal_accuracy_vec(pathology$pathology, pathology$scan, event_level = "second") ) }) # ------------------------------------------------------------------------------ test_that("Three class", { multi_ex <- data_three_by_three() micro <- data_three_by_three_micro() expect_equal( bal_accuracy(multi_ex, estimator = "macro")[[".estimate"]], macro_metric(bal_accuracy_binary) ) expect_equal( bal_accuracy(multi_ex, estimator = "macro_weighted")[[".estimate"]], macro_weighted_metric(bal_accuracy_binary) ) expect_equal( bal_accuracy(multi_ex, estimator = "micro")[[".estimate"]], with(micro, (sum(tp) / sum(p) + sum(tn) / sum(n)) / 2) ) }) test_that("work with class_pred input", { skip_if_not_installed("probably") cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1) cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2) fct_truth <- two_class_example$truth fct_truth[1] <- NA fct_estimate <- two_class_example$predicted fct_estimate[2] <- NA expect_identical( bal_accuracy_vec(fct_truth, cp_estimate), bal_accuracy_vec(fct_truth, fct_estimate) ) expect_identical( bal_accuracy_vec(fct_truth, cp_estimate, na_rm = FALSE), NA_real_ ) expect_snapshot( error = TRUE, bal_accuracy(cp_truth, cp_estimate) ) }) # ------------------------------------------------------------------------------ test_that("Two class weighted - sklearn equivalent", { py_res <- read_pydata("py-bal-accuracy") r_metric <- bal_accuracy two_class_example$weights <- read_weights_two_class_example() expect_equal( r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]], py_res$case_weight$binary ) })