library(testthat) library(yamlet) library(dplyr) library(magrittr) library(ggplot2) test_that('print.dg treats variable as categorical if guide has length > 1',{ file <- system.file(package = 'yamlet', 'extdata','quinidine.csv') library(ggplot2) library(dplyr) library(magrittr) file %>% decorate %>% filter(!is.na(conc)) %>% ggplot(aes(x = time, y = conc, color = Heart)) + geom_point() # look for legend: congestive heart failure (mod/no/sev) }) test_that('print.dg uses conditional labels and guides',{ file <- system.file(package = 'yamlet', 'extdata','phenobarb.csv') file %>% decorate %>% filter(event == 'conc') %>% ggplot(aes(x = time, y = value, color = ApgarInd)) + geom_point() # look for y axis: serum phenobarbital concentration (only true if event == conc) }) test_that('ggplot.decorated works with multiple layers',{ library(yamlet) library(ggplot2) library(magrittr) library(csv) a <- io_csv(system.file(package = 'yamlet', 'extdata','phenobarb.csv')) b <- io_csv(system.file(package = 'yamlet', 'extdata','quinidine.csv')) c <- as.csv(system.file(package = 'yamlet', 'extdata','phenobarb.csv')) d <- as.csv(system.file(package = 'yamlet', 'extdata','quinidine.csv')) x <- a %>% filter(event == 'conc') %>% ggplot(aes(x = time, y = value, color = ApgarInd)) + geom_point() + b %>% filter(!is.na(conc)) %>% geom_point(data = ., aes(x = time/10, y = conc*10, color = Heart)) # nonsensical, but shows injection of new layer with categories y <- c %>% filter(event == 'conc') %>% ggplot2:::ggplot.default(aes(x = time, y = value, color = ApgarInd)) + geom_point() + d %>% filter(!is.na(conc)) %>% geom_point(data = ., aes(x = time/10, y = conc*10, color = Heart)) # as above, without the benefit of metadata (see reduced axis labels) }) test_that('ggready supports axis label line breaks',{ library(yamlet) library(ggplot2) library(magrittr) library(dplyr) library(encode) data(mtcars) mtcars %>% select(mpg, vs, am) %>% data.frame %>% mutate( plotgroup = case_when( vs == 0 & am == 0 ~ 'v-shaped\nautomatic', vs == 0 & am == 1 ~ 'v-shaped\nmanual', vs == 1 & am == 0 ~ 'straight\nautomatic', vs == 1 & am == 1 ~ 'straight\nmanual' ) ) %>% redecorate(" mpg: [ milage, mi/gal ] plotgroup: [ engine\\ntransmission, [v-shaped\n\nautomatic,v-shaped\n\nmanual,straight\n\nautomatic,straight\n\nmanual]] ") %>% ggready %>% ggplot(aes(x = plotgroup, y = mpg)) + geom_boxplot() # note that x axis labels are 2-line, as is x-axis category labels }) test_that('subplots respect metadata assignments',{ library(ggplot2) library(magrittr) library(dplyr) library(gridExtra) library(csv) a <- io_csv(system.file(package = 'yamlet', 'extdata','phenobarb.csv')) b <- io_csv(system.file(package = 'yamlet', 'extdata','quinidine.csv')) c <- as.csv(system.file(package = 'yamlet', 'extdata','phenobarb.csv')) d <- as.csv(system.file(package = 'yamlet', 'extdata','quinidine.csv')) x <- a %>% filter(event == 'conc') %>% ggplot(aes(x = time, y = value, color = ApgarInd)) + geom_point() + b %>% filter(!is.na(conc)) %>% geom_point(data = ., aes(x = time/10, y = conc*10, color = Heart)) y <- a %>% filter(event == 'conc') %>% ggplot2:::ggplot.default(aes(x = time, y = value, color = ApgarInd)) + geom_point() + d %>% filter(!is.na(conc)) %>% geom_point(data = ., aes(x = time/10, y = conc*10, color = Heart)) grid.arrange(x, y) # note informative axis labels in first panel p <- x %>% ggplot_build q <- p %>% ggplot_gtable plot(q) expect_equal_to_reference(file = '098.rds', p) foo <- ggplot_build(x) bar <- print(x) }) test_that('print method for decorated_ggplot supports colour, fill, size, shape, linetype, alpha',{ x <- data.frame(x = c(1:6, 3:8), y = c(1:6,1:6), z = letters[c(1:6,1:6)]) x %<>% decorate('z: [color: ["red", "blue", "green", "gold", "black", "magenta"]]') x %<>% decorate('z: [fill: ["red", "blue", "green", "gold", "black", "magenta"]]') x %<>% decorate('z: [shape: [20, 21, 22, 23, 24, 25]]') x %<>% decorate('z: [linetype: [6, 5, 4, 3, 2, 1]]') x %<>% decorate('z: [alpha: [ .9, .8, .7, .6, .5, .4]]') x %<>% decorate('z: [linewidth: [1, 1.5, 2, 2.5, 3, 3.5]]') # undebug(yamlet:::print.decorated_ggplot) x %>% ggplot(aes( x, y, color = z, fill = z, shape = z, linetype = z, alpha = z )) + geom_point() + geom_line(linewidth = 1) }) # notice that all aesthetics are supported. Seems like under certain circumstances, # there is a warning not to use discrete scale for continuous vars. test_that('print method for decorate_ggplot respects aesthetics with assignment priority of sort-unique, guide, factor levels, codelist',{ }) test_that('print.decorated_ggplot correctly handles spork for x axis, y axis, facet labels, and legends',{ library(magrittr) library(ggplot2) library(tablet) library(yamlet) library(dplyr) x <- data.frame( time = 1:10, work = (1:10)^1.5, group = 1:2, set = c(rep('delta',5), rep('gamma', 5)) ) x %<>% decorate(' time: [ Time_cum.^alpha, h ] work: [ Work_total_obs\\n, kg*m^2/s^2 ] group: [ Group, [ Second\\nGroup^\\*: 2, First\\nGroup^#: 1 ]] set: [ Set, [ gamma, delta ]] ') # note the special headers and group levels x %>% enscript %>% group_by(group, set) %>% tablet %>% as_kable # note the literal axes and legends x %>% resolve %>% ggplot(aes(time, work, color = group, shape = set)) + geom_point() # note the special axes and legends x %>% enscript %>% ggplot(aes(time, work, color = group, shape = set)) + geom_point() # must work for facet_wrap and facet_grid x %>% enscript %>% ggplot(aes(time, work, color = group, shape = set)) + geom_point() + facet_grid(set~group) x %>% enscript %>% ggplot(aes(time, work, color = group, shape = set)) + geom_point() + facet_wrap(~ set + group) })