library(testthat) library(xegaSelectGene) library(xegaDfGene) test_that("lFxegaDfGene OK", { expect_identical(lFxegaDfGene$penv$name(), "Parabola2D") expect_equal(lFxegaDfGene$replay(), 0) expect_equal(lFxegaDfGene$verbose(), 4) expect_equal(lFxegaDfGene$CutoffFit(), 0.5) expect_equal(lFxegaDfGene$CBestFitness(), 100) expect_equal(lFxegaDfGene$MutationRate1(), 0.01) expect_equal(lFxegaDfGene$MutationRate2(), 0.20) expect_equal(lFxegaDfGene$CrossRate(), 0.8) expect_equal(lFxegaDfGene$UCrossSwap(), 0.2) expect_equal(lFxegaDfGene$Max(), 1) expect_equal(lFxegaDfGene$Offset(), 1) expect_equal(lFxegaDfGene$Eps(), 0.01) expect_identical(lFxegaDfGene$Elitist(), TRUE) expect_equal(lFxegaDfGene$TournamentSize(), 2) } )