skip_if_not_installed("recipes") test_that("can predict from a workflow", { mod <- parsnip::linear_reg() mod <- parsnip::set_engine(mod, "lm") workflow <- workflow() workflow <- add_formula(workflow, mpg ~ cyl) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars) result <- predict(fit_workflow, mtcars) expect_s3_class(result, "tbl_df") expect_equal(nrow(result), 32) }) test_that("workflow must have been `fit()` before prediction can be done", { expect_snapshot(error = TRUE, predict(workflow(), mtcars)) }) test_that("formula preprocessing is done to the `new_data`", { mod <- parsnip::linear_reg() mod <- parsnip::set_engine(mod, "lm") workflow <- workflow() workflow <- add_formula(workflow, mpg ~ log(cyl)) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars) result1 <- predict(fit_workflow, mtcars) # pre-log the data mtcars_with_log <- mtcars mtcars_with_log$cyl <- log(mtcars_with_log$cyl) workflow <- workflow() workflow <- add_formula(workflow, mpg ~ cyl) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars_with_log) result2 <- predict(fit_workflow, mtcars_with_log) expect_equal(result1, result2) }) test_that("recipe preprocessing is done to the `new_data`", { mod <- parsnip::linear_reg() mod <- parsnip::set_engine(mod, "lm") rec <- recipes::recipe(mpg ~ cyl, mtcars) rec <- recipes::step_log(rec, cyl) workflow <- workflow() workflow <- add_recipe(workflow, rec) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars) result1 <- predict(fit_workflow, mtcars) # pre-log the data mtcars_with_log <- mtcars mtcars_with_log$cyl <- log(mtcars_with_log$cyl) workflow <- workflow() workflow <- add_formula(workflow, mpg ~ cyl) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars_with_log) result2 <- predict(fit_workflow, mtcars_with_log) expect_equal(result1, result2) }) test_that("`new_data` must have all of the original predictors", { mod <- parsnip::linear_reg() mod <- parsnip::set_engine(mod, "lm") rec <- recipes::recipe(mpg ~ cyl, mtcars) rec <- recipes::step_log(rec, cyl) workflow <- workflow() workflow <- add_recipe(workflow, rec) workflow <- add_model(workflow, mod) fit_workflow <- fit(workflow, mtcars) cars_no_cyl <- mtcars cars_no_cyl$cyl <- NULL # This error comes from hardhat, so we don't snapshot it expect_error(predict(fit_workflow, cars_no_cyl)) }) test_that("blueprint will get passed on to hardhat::forge()", { train <- data.frame( y = c(1L, 5L, 3L, 4L), x = factor(c("x", "y", "x", "y")) ) test <- data.frame( x = factor(c("x", "y", "z")) ) spec <- parsnip::linear_reg() spec <- parsnip::set_engine(spec, "lm") bp1 <- hardhat::default_formula_blueprint(intercept = TRUE, allow_novel_levels = FALSE) bp2 <- hardhat::default_formula_blueprint(intercept = TRUE, allow_novel_levels = TRUE) workflow <- workflow() workflow <- add_model(workflow, spec) workflow1 <- add_formula(workflow, y ~ x, blueprint = bp1) workflow2 <- add_formula(workflow, y ~ x, blueprint = bp2) mod1 <- fit(workflow1, train) mod2 <- fit(workflow2, train) # Warning from hardhat, so we don't snapshot it expect_warning(pred1 <- predict(mod1, test)) expect_no_warning(pred2 <- predict(mod2, test)) expect_identical( pred1[[".pred"]], c(2, 4.5, NA) ) expect_identical( pred2[[".pred"]], c(2, 4.5, 2) ) }) test_that("monitoring: no double intercept due to dot expansion in model formula #210", { mod <- parsnip::linear_reg() mod <- parsnip::set_engine(mod, "lm") # model formula includes a dot to mean "everything available after the preprocessing formula workflow <- workflow() workflow <- add_model(workflow, mod, formula = mpg ~ .) blueprint_with_intercept <- hardhat::default_formula_blueprint(intercept = TRUE) workflow_with_intercept <- add_formula(workflow, mpg ~ hp + disp, blueprint = blueprint_with_intercept) fit_with_intercept <- fit(workflow_with_intercept, mtcars) # The dot expansion used to include the intercept column, added via the blueprint, as a regular predictor. # `parsnip:::prepare_data()` removed this column, so lm's predict method errored. # Now it gets removed before fitting (lm will handle the intercept itself), # so lm()'s predict method won't error anymore here. (tidymodels/parsnip#1033) expect_no_error(predict(fit_with_intercept, mtcars)) })