require(quanteda) test_that("predict() is working", { dfmt_feat <- dfm(tokens(c("aa bb cc", "aa bb", "bb cc"))) dfmt_label <- dfm(tokens(c("A", "B", "B")), tolower = FALSE) dfmt_new <- dfm(tokens(c("aa bb cc", "aa bb", "zz"))) map <- textmodel_wordmap(dfmt_feat, dfmt_label) expect_equal( predict(map), factor(c(text1 = "A", text2 = "B", text3 = "B"), levels = c("A", "B")) ) expect_equal( predict(map, rank = 2), factor(c(text1 = "B", text2 = "A", text3 = "A"), levels = c("A", "B")) ) expect_error( predict(map, rank = -1), "The value of rank must be between 1 and 2" ) expect_error( predict(map, rank = 1:2), "The length of rank must be 1" ) # NA for documents without registered feature expect_equal(predict(map), factor(c(text1 = "A", text2 = "B", text3 = "B"))) expect_equal(predict(map, newdata = dfmt_new), factor(c(text1 = "A", text2 = "B", text3 = NA))) pred <- predict(map, confidence = TRUE, newdata = dfmt_new) expect_equal(pred$class, factor(c(text1 = "A", text2 = "B", text3 = NA))) expect_equal(pred$confidence.fit, c(0.018, 0.048, NA), tolerance = 0.01) expect_equal(predict(map, newdata = dfmt_new, rank = 2), factor(c(text1 = "B", text2 = "A", text3 = NA))) expect_equal(as.numeric(predict(map, newdata = dfmt_new, type = "all")), c(0.018, -0.048, NA, -0.018, 0.048, NA), tolerance = 0.01) }) test_that("min_n is working", { dfmt_feat <- dfm(tokens(c("aa bb cc dd", "aa bb", "bb cc"))) dfmt_label <- dfm(tokens(c("A", "B", "B")), tolower = FALSE) map <- textmodel_wordmap(dfmt_feat, dfmt_label) pred1 <- predict(map, type = "all") pred2 <- predict(map, type = "all", min_n = 1) expect_equal(pred2, pred1) pred3 <- predict(map, type = "all", min_n = 10) expect_equal(pred3, pred1 * ntoken(dfmt_feat) / 10) pred4 <- predict(map, type = "all", min_n = 3) expect_equal(pred4, pred1 * ntoken(dfmt_feat) / c(4, 3, 3)) expect_error( predict(map, type = "all", min_n = 1:2), "The length of min_n must be 1" ) expect_error( predict(map, type = "all", min_n = -3), "The value of min_n must be between 0 and Inf" ) }) test_that("min_conf is working", { dfmt_feat <- dfm(tokens(c("aa bb cc dd", "aa bb", "bb cc"))) dfmt_label <- dfm(tokens(c("A", "B", "B")), tolower = FALSE) map <- textmodel_wordmap(dfmt_feat, dfmt_label) expect_equal( predict(map, confidence = TRUE)$class, factor(c(text1 = "A", text2 = "B", text3 = "B"), levels = c("A", "B")) ) expect_equal( predict(map, confidence = TRUE, min_conf = 0.1)$class, factor(c(text1 = NA, text2 = "B", text3 = "B"), levels = c("A", "B")) ) expect_equal( predict(map, confidence = FALSE, min_conf = 0.1), factor(c(text1 = NA, text2 = "B", text3 = "B"), levels = c("A", "B")) ) expect_equal( predict(map, confidence = TRUE, min_conf = 1)$class, factor(c(text1 = NA, text2 = NA, text3 = NA), levels = c("A", "B")) ) expect_equal( predict(map, confidence = FALSE, min_conf = 1), factor(c(text1 = NA, text2 = NA, text3 = NA), levels = c("A", "B")) ) expect_error( predict(map, confidence = TRUE, min_conf = NA), "The value of min_conf cannot be NA" ) expect_error( predict(map, confidence = TRUE, min_conf = c(0.1, 0)), "The length of min_conf must be 1" ) })