# # Test labeling functions # library(testthat) library(volker) # Load and recode data data <- volker::chatgpt data <- volker::data_clean(data) # Get labels test_that("Labels are retrieved", { volker::codebook(data) |> print(n=Inf) |> expect_snapshot(cran = TRUE) }) # What happens when labels are empty? test_that("Missing labels make no trouble", { data %>% dplyr::select(starts_with("cg_adoption")) %>% volker::labs_clear() %>% volker::codebook() %>% expect_snapshot(cran = TRUE) }) # Detect the scale test_that("Factors are unordered", { data %>% get_direction(adopter) |> expect_equal(0) }) test_that("Items are ordered", { data %>% get_direction(use_private) |> expect_equal(1) }) # Test store and clear labels test_that("Store and clear the codebook", { data %>% volker::labs_store() %>% volker::labs_clear() %>% codebook() %>% print(n=Inf) |> expect_snapshot(cran = TRUE) }) # Test store and restore labels test_that("Store, clear and restore the codebook", { data %>% volker::labs_store() %>% volker::labs_clear() %>% volker::labs_restore() %>% codebook() %>% print(n=Inf) |> expect_snapshot(cran = TRUE) }) # Replace item values test_that("Item values are replaced and keep their order", { data |> dplyr::select(adopter) |> # TODO: Even if the column was converted to character beforehand # dplyr::mutate(adopter = as.character(adopter)) |> volker:::labs_replace(adopter, volker::codebook(data, adopter)) |> dplyr::pull(adopter) |> levels() |> expect_snapshot(cran = TRUE) }) # Replace item values test_that("Item values are kept even if they are not in the codebook", { codes <- data |> codebook(use_private) |> filter(value_name %in% c("1","5")) data |> dplyr::distinct(from = use_private) |> dplyr::mutate(to = from) |> volker:::labs_replace(to, codes) |> dplyr::arrange(to) |> expect_snapshot(cran = TRUE) }) # Replace item values and keep the comment test_that("The column title is kept when values are replaced", { df <- tibble( values = c("A", "B", "C") ) |> labs_apply(tibble( item_name = c("values"), item_label = c("VALS") )) codes <- tibble( value_name = c("A", "B", "C"), value_label = c("1", "2", "3") ) df <- volker:::labs_replace(df, values, codes, col_from="value_name", col_to="value_label") tab_counts(df, values) |> expect_snapshot(cran = TRUE) }) # Get prefix from labels test_that("A common prefix is removed from labels", { data |> dplyr::select(starts_with("use")) |> codebook() |> dplyr::pull(item_label) |> get_prefix() |> expect_snapshot(cran = TRUE) }) # Remove prefix from labels test_that("A common prefix is removed from labels", { data |> dplyr::select(starts_with("use")) |> codebook() |> dplyr::pull(item_label) |> trim_prefix() |> expect_snapshot(cran = TRUE) }) # Labeling coded numeric values test_that("Numeric values are relabeled", { data %>% labs_apply( cols=starts_with("cg_adoption_advantage"), values = list( "1" = "Stimme überhaupt nicht zu", "2" = "Stimme nicht zu", "3" = "Unentschieden", "4" = "Stimme zu", "5" = "Stimme voll und ganz zu" ) ) %>% tab_counts(starts_with("cg_adoption_advantage")) |> expect_snapshot(cran = TRUE) }) # Labeling using a named vector equals labeling by a named list test_that("Numeric values are relabeled by a named vector", { result_vector <- data %>% labs_apply( cols=starts_with("cg_adoption_advantage"), values = c( "1" = "Stimme überhaupt nicht zu", "2" = "Stimme nicht zu", "3" = "Unentschieden", "4" = "Stimme zu", "5" = "Stimme voll und ganz zu" ) ) %>% tab_counts(cg_adoption_advantage_01) result_list <- data %>% labs_apply( cols=starts_with("cg_adoption_advantage"), values = list( "1" = "Stimme überhaupt nicht zu", "2" = "Stimme nicht zu", "3" = "Unentschieden", "4" = "Stimme zu", "5" = "Stimme voll und ganz zu" ) ) %>% tab_counts(cg_adoption_advantage_01) expect_identical(result_list, result_vector) }) # Labeling uncoded factor values test_that("Factor values are relabeled", { data %>% labs_apply( cols=sd_gender, values = list( "female" = "Weiblich", "male" = "Männlich", "diverse" = "Divers" ) ) |> tab_counts(sd_gender) |> expect_snapshot(cran = TRUE) }) # Labeling elliptical numeric values (where some labels are present) test_that("Elliptical numeric values are relabeled", { testdata <- select(data , use_private) attr(testdata$use_private,"2") <- NULL attr(testdata$use_private,"3") <- NULL attr(testdata$use_private,"4") <- NULL testdata %>% labs_apply( cols=use_private, values = list( "1" = "never", "2" = "2", "3" = "3", "4" = "4", "5" = "almost daily" ) ) |> codebook(use_private) |> expect_snapshot(cran = TRUE) }) # Label wrapping test_that("Labels are wrapped at whitespace and slashes", { volker:::wrap_label("Super long/short label\\s", width=3) |> expect_snapshot_value(cran = TRUE) })