# # Test table appearance # library(testthat) library(volker) # Load and recode data data <- volker::chatgpt # Frequency table # tab_counts_one test_that("Frequency table", { expect_snapshot(volker::tab_counts(data, sd_gender), cran= TRUE) }) # Cross table of categorical variables # tab_counts_one_grouped test_that("Cross table of categorical variables", { expect_snapshot(volker::tab_counts(data, adopter, sd_gender), cran= TRUE) }) # Frequency table for multiple categorical variables # tab_counts_items test_that("Frequency table for multiple categorical variables", { expect_snapshot( volker::tab_counts( data, tidyselect::starts_with("cg_adoption_")), cran= TRUE) }) # Frequency table for multiple categorical variables grouped # tab_counts_items_grouped test_that("Frequency table for multiple categorical variables by grouping variable", { expect_snapshot( volker::tab_counts( data, tidyselect::starts_with("cg_adoption_"), sd_gender, category = c("agree", "strongly agree")), cran= TRUE) }) # Distribution table for age # tab_metrics_one test_that("Distribution table for age", { expect_snapshot(volker::tab_metrics(data, sd_age), cran= TRUE) }) # Group comparison of a metric variable # tab_metrics_one_grouped test_that("Group comparison of a metric variable", { expect_snapshot(volker::tab_metrics(data, sd_age, sd_gender), cran= TRUE) }) # Correlations of two variables # tab_metrics_one_cor test_that("Compare means of multiple items", { expect_snapshot( volker::tab_metrics( data, use_work, use_private, metric=TRUE), cran= TRUE) }) # Distribution table for multiple metric items # tab_metrics_items test_that("Distribution table for multiple metric items", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_") ),cran= TRUE) }) # Compare means of multiple items # tab_metrics_items_grouped test_that("Compare means of multiple items", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_"), sd_gender ), cran= TRUE) }) # Correlations of an item battery with one variable # tab_metrics_items_cor test_that("Correlations of an item battery with one variable", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_"), sd_age, metric=TRUE ), cran= TRUE) }) # Correlations of an item battery with one variable and spearman # tab_metrics_items_cor test_that("Correlations of an item battery with one variable and spearman", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_"), sd_age, metric=TRUE, method = "spearman" ), cran= TRUE) }) # Correlations of two item batteries # tab_metrics_items_cor_items test_that("Correlate two item batteries", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_"), tidyselect::starts_with("use_"), metric=TRUE ),cran= TRUE) }) # Correlations of two item batteries with ci # tab_metrics_items_cor_items test_that("Correlate two item batteries with ci", { expect_snapshot( volker::tab_metrics( data, starts_with("cg_adoption_adv"), starts_with("use_"), metric = TRUE, ci = T ),cran= TRUE) }) # Correlations of two item batteries and spearman # tab_metrics_items_cor_items test_that("Correlate two item batteries with spearmn", { expect_snapshot( volker::tab_metrics( data, tidyselect::starts_with("cg_adoption_"), tidyselect::starts_with("use_"), metric=TRUE, method = "spearman", ),cran= TRUE) }) # ...with missings test_that("missing values make no trouble", { data %>% # volker::labs_store() |> dplyr::bind_rows(tibble::tibble(sd_gender = c("X", "X", "X"))) %>% # volker::labs_restore() |> volker::tab_metrics_items_grouped( tidyselect::starts_with("cg_adoption_"), sd_gender) %>% expect_snapshot(cran = TRUE) }) # Item order reflects column order test_that("Item order is kept", { expect_snapshot( tibble::tribble( ~f1, ~f2, ~f10, 1, 1, 1, 1, 2, 1, 2, 2, 2 ) |> tab_counts_items(c(f1:f10)) , cran= TRUE ) })