context("Sampling test") library(volesti) runsample <- function(P, name_string, dist){ if (dist == "uniform") { p = sample_points(P, n = 100) } else { p = sample_points(P, n = 100, distribution = list("density" = "gaussian")) } if (length(p[is.nan(p)])>0 | length(p[is.infinite(p)])>0) { res = 0 } else { res = 1 } return(res) } path = system.file('extdata', package = 'volesti') for (i in 1:2) { if (i==1) { distribution = 'gaussian' } else { distribution = 'uniform' } test_that("Sampling test", { P= gen_cube(10, 'H') res = runsample(P, 'H-cube10', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_cross(10, 'H') res = runsample(P, 'H-cross10', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_prod_simplex(5) res = runsample(P, 'H-prod_simplex_5_5', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_prod_simplex(10) res = runsample(P, 'H-prod_simplex_10_10', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_simplex(10, 'H') res = runsample(P, 'H-prod_simplex10', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_skinny_cube(10) res = runsample(P, 'H-skinny_cube10', distribution) expect_equal(res, 1) }) test_that("Sampling test", { P = gen_skinny_cube(20) res = runsample(P, 'H-skinny_cube20', distribution) expect_equal(res, 1) }) test_that("Sampling test", { Z = gen_rand_zonotope(4, 8) res = runsample(Z, 'zonotope_4_8', distribution) expect_equal(res, 1) }) }