test_that("tidy", { mocksum <- mockSummarisedResult() |> # settings dplyr::union_all( dplyr::tibble( result_id = as.integer(1), "cdm_name" = "mock", "result_type" = "mock_summarised_result", "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "overall", "group_level" = "overall", "strata_name" = "overall", "strata_level" = "overall", "variable_name" = "settings", "variable_level" = NA_character_, "estimate_name" = "mock_default", "estimate_type" = "logical", "estimate_value" = "TRUE", "additional_name" = "overall", "additional_level" = "overall" ) ) expect_no_error(res0 <- tidy(x = mocksum, pivotEstimatesBy = "estimate_name")) expect_true(nrow(res0 |> dplyr::filter(.data$variable_name == "settings")) == 0) expect_true(all(c("cohort_name", "age_group", "sex", "mock_default", "count", "mean", "sd", "percentage") %in% colnames(res0))) expect_true(class(res0$percentage) == "numeric") expect_true(class(res0$mean) == "numeric") expect_true(class(res0$count) == "integer") expect_no_error(res1 <- tidy(mocksum, splitGroup = FALSE, splitAdditional = FALSE, splitStrata = FALSE, pivotEstimatesBy = c("variable_name", "variable_level", "estimate_name"))) expect_true(all(c("group_name", "group_level", "strata_name", "strata_level", "additional_name", "additional_level", "mock_default") %in% colnames(res1))) expect_true(all(c("number subjects_NA_count", "age_NA_mean", "age_NA_sd", "Medications_Amoxiciline_count", "Medications_Amoxiciline_percentage", "Medications_Ibuprofen_count", "Medications_Ibuprofen_percentage", "mock_default") %in% colnames(res1))) expect_no_error(res2 <- tidy(mocksum |> dplyr::filter(variable_name != "settings"), splitGroup = FALSE, splitAdditional = FALSE, pivotEstimatesBy = c("variable_name", "estimate_name"), nameStyle = "{estimate_name}__{variable_name}")) expect_false("mock_default" %in% colnames(res2)) expect_false("logic__settings" %in% colnames(res2)) expect_true(all(c("count__number subjects", "mean__age", "sd__age", "count__Medications", "percentage__Medications") %in% colnames(res2))) expect_true(class(res2$percentage__Medications) == "numeric") expect_true(class(res2$mean__age) == "numeric") expect_true(class(res2$count__Medications) == "integer") expect_no_error(res3 <- tidy(mocksum, splitGroup = FALSE, splitAdditional = FALSE, splitStrata = FALSE, pivotEstimatesBy = NULL)) expect_true(all(colnames(res3) %in% c(colnames(mocksum), "mock_default"))) # 2 id's: mocksum2 <- mocksum |> dplyr::union_all(mocksum |> dplyr::mutate(result_id = as.integer(2))) expect_no_error(res4 <- tidy(x = mocksum2)) }) test_that("tidy, dates", { result <- dplyr::tibble( "result_id" = integer(1), "cdm_name" = "mock", "result_type" = "mock_summarised_result", "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "cohort_name", "group_level" = c(rep("cohort1", 9), rep("cohort2", 9)), "strata_name" = rep(c( "overall", rep("age_group &&& sex", 4), rep("sex", 2), rep("age_group", 2) ), 2), "strata_level" = rep(c( "overall", "<40 &&& Male", ">=40 &&& Male", "<40 &&& Female", ">=40 &&& Female", "Male", "Female", "<40", ">=40" ), 2), "variable_name" = "number subjects", "variable_level" = NA_character_, "estimate_name" = "count", "estimate_type" = "integer", "estimate_value" = round(10000000*stats::runif(18)) |> as.character(), "additional_name" = "overall", "additional_level" = "overall" ) |> dplyr::union_all( dplyr::tibble( "result_id" = integer(1), "cdm_name" = "mock", "result_type" = "mock_summarised_result", "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "cohort_name", "group_level" = c(rep("cohort1", 9), rep("cohort2", 9)), "strata_name" = rep(c( "overall", rep("age_group &&& sex", 4), rep("sex", 2), rep("age_group", 2) ), 2), "strata_level" = rep(c( "overall", "<40 &&& Male", ">=40 &&& Male", "<40 &&& Female", ">=40 &&& Female", "Male", "Female", "<40", ">=40" ), 2), "variable_name" = "start date", "variable_level" = NA_character_, "estimate_name" = "date", "estimate_type" = "date", "estimate_value" = as.Date("2020-10-01") |> as.character(), "additional_name" = "overall", "additional_level" = "overall" ) ) |> omopgenerics::newSummarisedResult() expect_no_error(result_out <- tidy(result)) expect_true(class(as.Date(result_out |> dplyr::pull(date))) == "Date") })