test_that("formatEstimateValue", { result <- mockSummarisedResult() # default decimal input ---- result_output <- formatEstimateValue(result, decimals = c( integer = 0, numeric = 2, percentage = 1, proportion = 3 ), decimalMark = "@", bigMark = "=") ## Test big Mark ---- counts_in <- result$estimate_value[result_output$estimate_type == "integer"] counts_out <- result_output$estimate_value[result_output$estimate_type == "integer"] zeroMarks_out <- base::paste(counts_out[base::nchar(counts_in) < 4], collapse = "") zeroMarks_out <- nchar(zeroMarks_out) - nchar(gsub("=", "", zeroMarks_out)) oneMark_in <- sum(base::nchar(counts_in) < 7 & base::nchar(counts_in) > 3) oneMark_out <- base::paste(counts_out[base::nchar(counts_in) < 7 & base::nchar(counts_in) > 3], collapse = "") oneMark_out <- nchar(oneMark_out) - nchar(gsub("=", "", oneMark_out)) twoMarks_in <- sum(base::nchar(counts_in) == 7)*2 twoMarks_out <- base::paste(counts_out[base::nchar(counts_in) == 7], collapse = "") twoMarks_out <- nchar(twoMarks_out) - nchar(gsub("=", "", twoMarks_out)) # check nummber of marks expect_equal(0, zeroMarks_out) expect_equal(oneMark_in, oneMark_out) expect_equal(twoMarks_in, twoMarks_out) # check type of mark expect_identical(as.integer(counts_in), as.integer(base::gsub("=", "", counts_out))) ## Test decimals (default input) ---- # check estimate types expect_equal(result_output |> dplyr::filter(grepl("@", .data$estimate_value)) |> dplyr::distinct(estimate_type) |> dplyr::pull(), c("numeric", "percentage")) # check number of decimals ## numeric numeric <- result_output$estimate_value[result_output$estimate_type == "numeric"] if (length(numeric) > 0) { expect_true(lapply(strsplit(numeric, "@"), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 2) } ## percentage percentage <- result_output$estimate_value[result_output$estimate_type == "percentage"] if (length(percentage) > 0) { expect_true(lapply(strsplit(percentage, "@"), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 1) } # Test decimals ---- result_output <- formatEstimateValue(result, decimals = c( integer = 3, numeric = 0 ), decimalMark = "_", bigMark = "%") # check estimate types expect_true(result_output |> dplyr::filter(grepl("_", .data$estimate_value)) |> dplyr::distinct(estimate_type) |> dplyr::pull() == "integer") # check number of decimals ## integer integer <- result_output$estimate_value[result_output$estimate_type == "integer"] if (length(integer) > 0) { expect_true(lapply(strsplit(integer, "_"), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 3) } ## numeric numeric <- result_output$estimate_value[result_output$estimate_type == "numeric"] if (length(numeric) > 0) { expect_false(all(grepl("_", numeric))) } ## percentage expect_identical(result_output$estimate_value[result_output$estimate_type == "percentage"], result$estimate_value[result$estimate_type == "percentage"]) # Test decimals ---- result_output <- formatEstimateValue(result, decimals = 4, decimalMark = "_", bigMark = "%") # check estimate types expect_true(all(result_output |> dplyr::filter(grepl("_", .data$estimate_value)) |> dplyr::distinct(estimate_type) |> dplyr::pull() == unique(result$estimate_type))) # check number of decimals expect_true(lapply(strsplit(result_output$estimate_value, "_"), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 4) # Estimate name input ---- result_output <- formatEstimateValue(result, decimals = c(mean = 2, sd = 3, count = 0)) # check number of decimals ## mean mean <- result_output$estimate_value[result_output$estimate_name == "mean"] if (length(mean) > 0) { expect_true(lapply(strsplit(mean, ".", fixed = TRUE), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 2) } ## sd sd <- result_output$estimate_value[result_output$estimate_name == "sd"] if (length(sd) > 0) { expect_true(lapply(strsplit(sd, ".", fixed = TRUE), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 3) } ## count count <- result_output$estimate_value[result_output$estimate_name == "count"] if (length(count) > 0) { expect_false(all(grepl(".", count, fixed = TRUE))) } ## percentage expect_identical(result_output$estimate_value[result_output$estimate_name == "percentage"], result$estimate_value[result$estimate_name == "percentage"]) # Hierarchy ---- result_output <- formatEstimateValue(result, decimals = c(numeric = 2, mean = 3)) mean <- result_output$estimate_value[result_output$estimate_name == "mean"] if (length(mean) > 0) { expect_true(lapply(strsplit(mean, ".", fixed = TRUE), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 3) } numeric <- result_output$estimate_value[result_output$estimate_type == "numeric" & result_output$estimate_name != "mean"] if (length(numeric) > 0) { expect_true(lapply(strsplit(numeric, ".", fixed = TRUE), function(x) {x[[2]]}) |> unlist() |> nchar() |> mean() == 2) } ## Test NULL decimals ---- result_output <- formatEstimateValue(result, decimals = NULL, decimalMark = "..", bigMark = ",") ## count counts_in <- result$estimate_value[result_output$estimate_type == "integer"] counts_out <- result_output$estimate_value[result_output$estimate_type == "integer"] zeroMarks_out <- base::paste(counts_out[base::nchar(counts_in) < 4], collapse = "") zeroMarks_out <- nchar(zeroMarks_out) - nchar(gsub("=", "", zeroMarks_out)) oneMark_in <- sum(base::nchar(counts_in) < 7 & base::nchar(counts_in) > 3) oneMark_out <- base::paste(counts_out[base::nchar(counts_in) < 7 & base::nchar(counts_in) > 3], collapse = "") oneMark_out <- nchar(oneMark_out) - nchar(gsub("=", "", oneMark_out)) twoMarks_in <- sum(base::nchar(counts_in) == 7)*2 twoMarks_out <- base::paste(counts_out[base::nchar(counts_in) == 7], collapse = "") twoMarks_out <- nchar(twoMarks_out) - nchar(gsub("=", "", twoMarks_out)) if (length(counts_out) > 0) { expect_false(all(grepl("..", counts_out, fixed = TRUE))) } ## mean mean_in <- result$estimate_value[result$estimate_name == "mean"] mean_out <- result_output$estimate_value[result_output$estimate_name == "mean"] if (length(mean) > 0) { expect_equal(mean_out, base::format(as.numeric(mean_in), decimal.mark = "..", trim = TRUE, justify = "none")) } ## sd sd_in <- result$estimate_value[result$estimate_name == "sd"] sd_out <- result_output$estimate_value[result_output$estimate_name == "sd"] if (length(sd) > 0) { expect_equal(sd_out, base::format(as.numeric(sd_in), decimal.mark = "..", trim = TRUE, justify = "none")) } ## Test NULL bigMark ---- result_output <- formatEstimateValue(result, decimals = 0, decimalMark = ".", bigMark = NULL) expect_equal(result_output$estimate_value[result_output$estimate_name == "count"], result$estimate_value[result$estimate_name == "count"]) ## Test NULL decimals + NULL bigMark ---- result_output <- formatEstimateValue(result, decimals = NULL, decimalMark = ".", bigMark = NULL) expect_equal(result_output$estimate_value[result_output$estimate_name == "count"], result$estimate_value[result$estimate_name == "count"]) ## mean mean_in <- result$estimate_value[result$estimate_name == "mean"] mean_out <- result_output$estimate_value[result_output$estimate_name == "mean"] if (length(mean) > 0) { expect_equal(mean_out, base::format(as.numeric(mean_in), decimal.mark = ".", trim = TRUE, justify = "none")) } ## sd sd_in <- result$estimate_value[result$estimate_name == "sd"] sd_out <- result_output$estimate_value[result_output$estimate_name == "sd"] if (length(sd) > 0) { expect_equal(sd_out, base::format(as.numeric(sd_in), decimal.mark = ".", trim = TRUE, justify = "none")) } # no warning when estimate value is NA result <- mockSummarisedResult() |> dplyr::union_all(dplyr::tibble( "result_id" = as.integer(1), "cdm_name" = "mock", "result_type" = NA_character_, "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "cohort_name", "group_level" = "cohort3", "strata_name" = rep(c( "overall", rep("age_group &&& sex", 4), rep("sex", 2), rep("age_group", 2) ), 2), "strata_level" = rep(c( "overall", "<40 &&& Male", ">=40 &&& Male", "<40 &&& Female", ">=40 &&& Female", "Male", "Female", "<40", ">=40" ), 2), "variable_name" = "number subjects", "variable_level" = NA_character_, "estimate_name" = "count", "estimate_type" = "integer", "estimate_value" = NA_character_, "additional_name" = "overall", "additional_level" = "overall" )) expect_no_warning(formatEstimateValue(result, decimals = 2, decimalMark = ".", bigMark = ",")) # Wroing input ---- expect_error(formatEstimateValue(result, decimals = NA, decimalMark = "_", bigMark = "%")) expect_error(formatEstimateValue(result, decimals = c("hola" = 0), decimalMark = "_", bigMark = "%")) expect_error(formatEstimateValue(result, decimals = 2, decimalMark = NA, bigMark = "%")) expect_error(formatEstimateValue(result, decimals = c(count = 1, lala = 0)), "lala do not correspond to estimate_type or estimate_name values.") expect_error(formatEstimateValue(result, decimals = 1, decimalMark = NULL, bigMark = ",")) expect_error(formatEstimateValue(result |> dplyr::select(-estimate_value))) }) test_that("formatEstimateValue, dates", { result <- dplyr::tibble( "result_id" = integer(1), "cdm_name" = "mock", "result_type" = "mock_summarised_result", "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "cohort_name", "group_level" = c(rep("cohort1", 9), rep("cohort2", 9)), "strata_name" = rep(c( "overall", rep("age_group &&& sex", 4), rep("sex", 2), rep("age_group", 2) ), 2), "strata_level" = rep(c( "overall", "<40 &&& Male", ">=40 &&& Male", "<40 &&& Female", ">=40 &&& Female", "Male", "Female", "<40", ">=40" ), 2), "variable_name" = "number subjects", "variable_level" = NA_character_, "estimate_name" = "count", "estimate_type" = "integer", "estimate_value" = round(10000000*stats::runif(18)) |> as.character(), "additional_name" = "overall", "additional_level" = "overall" ) |> dplyr::union_all( dplyr::tibble( "result_id" = integer(1), "cdm_name" = "mock", "result_type" = "mock_summarised_result", "package_name" = "visOmopResults", "package_version" = utils::packageVersion("visOmopResults") |> as.character(), "group_name" = "cohort_name", "group_level" = c(rep("cohort1", 9), rep("cohort2", 9)), "strata_name" = rep(c( "overall", rep("age_group &&& sex", 4), rep("sex", 2), rep("age_group", 2) ), 2), "strata_level" = rep(c( "overall", "<40 &&& Male", ">=40 &&& Male", "<40 &&& Female", ">=40 &&& Female", "Male", "Female", "<40", ">=40" ), 2), "variable_name" = "start date", "variable_level" = NA_character_, "estimate_name" = "date", "estimate_type" = "date", "estimate_value" = as.Date("2020-10-01") |> as.character(), "additional_name" = "overall", "additional_level" = "overall" ) ) |> omopgenerics::newSummarisedResult() expect_no_error(result_out <- formatEstimateValue(result, decimals = 0)) expect_true(class(as.Date(result_out |> dplyr::filter(estimate_type == "date") |> dplyr::pull(estimate_value))) == "Date") expect_warning(result_out <- formatEstimateValue(result, decimals = c(date = 1))) expect_true(class(as.Date(result_out |> dplyr::filter(estimate_type == "date") |> dplyr::pull(estimate_value))) == "Date") })