R Under development (unstable) (2025-01-19 r87600 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > ############################### CLR #################################### > # Calculates clr-transformation. Should be equal. > > # Test data > # data(varespec) > testdata <- matrix(round(runif(1000, 0, 100)), nrow=20) > testdata <- testdata - 50 > testdata[testdata < 0] <- 0 > rownames(testdata) <- paste0("row", seq_len(nrow(testdata))) > colnames(testdata) <- paste0("col", seq_len(ncol(testdata))) > testdata.with.pseudo <- testdata + 1 > > # Calculates relative abundance table > relative <- vegan::decostand(testdata, "total") > relative.with.pseudo <- vegan::decostand(testdata+1, "total") > > # CLR data > x.clr <- vegan::decostand(testdata+1, method = "clr") > x.rclr <- vegan::decostand(testdata, method = "rclr") > x.clr.pseudo <- vegan::decostand(testdata, method = "clr", pseudocount=1) > > max(abs(x.clr - x.clr.pseudo))<1e-6 [1] TRUE > max(abs(vegan::decostand(testdata+1, method = "clr", pseudocount=0)-x.clr.pseudo))<1e-6 [1] TRUE > > # Tests clr > alt.clr <- t(apply(as.matrix(relative.with.pseudo), 1, FUN=function(x){ + log(x) - mean(log(x))})) > max(abs(x.clr-alt.clr)) < 1e-6 [1] TRUE > all((x.rclr==0) == (testdata==0)) [1] TRUE > > # Expect that error does not occur > vegan::decostand(testdata, method = "rclr") col1 col2 col3 col4 col5 col6 row1 0.0000000 -0.30833276 0.38481442 0.0000000 0.0000000 0.94443020 row2 0.5236026 0.00000000 0.00000000 0.6380130 0.0000000 0.00000000 row3 0.0000000 0.00000000 0.03461515 -0.1564401 0.7703219 0.58800039 row4 1.0243134 1.11132477 -0.56265167 0.0000000 0.4589996 0.67411096 row5 0.0000000 0.00000000 0.65879553 0.0000000 0.5913542 -0.46179567 row6 0.0000000 0.00000000 0.45496726 0.5947292 0.0000000 0.00000000 row7 0.2233837 0.81936715 -0.07672088 0.0000000 0.0000000 0.00000000 row8 0.0000000 0.00000000 0.36107377 -0.3320734 0.3610738 0.92068956 row9 0.7371682 0.00000000 0.06701058 -0.9445903 0.0000000 0.00000000 row10 0.8972155 0.00000000 0.00000000 0.0000000 0.0000000 0.74306485 row11 0.0000000 0.00000000 0.00000000 0.2397049 0.0000000 0.00000000 row12 0.0000000 0.00000000 0.00000000 0.2452028 0.0000000 -0.06845475 row13 0.0000000 0.00000000 0.78980000 -0.3088123 0.0000000 0.81511781 row14 0.4810868 -2.73778901 0.00000000 -0.9460295 -1.1283511 0.00000000 row15 0.0000000 0.00000000 0.00000000 -1.9477014 0.0000000 0.00000000 row16 0.0000000 0.07145693 0.00000000 0.0000000 0.0000000 0.01083231 row17 0.0000000 0.00000000 0.89184263 0.2756565 0.7864821 0.07086208 row18 0.0000000 0.00000000 0.00000000 0.0000000 0.6091441 0.00000000 row19 -0.1045501 -1.55146909 -2.93776345 -0.4528568 0.0000000 0.00000000 row20 -1.4876215 0.00000000 0.00000000 0.0000000 0.0809944 0.00000000 col7 col8 col9 col10 col11 col12 row1 0.00000000 0.230663737 -2.94739009 0.4538073 0.00000000 -0.8679486 row2 0.20514887 -1.026994811 0.20514887 0.0000000 -0.02846598 -0.5750097 row3 -0.90365449 0.425481456 0.53670709 0.0000000 0.00000000 0.0000000 row4 0.00000000 0.331166208 -0.68043470 0.0000000 -0.36198097 0.0000000 row5 0.59135425 0.295890034 0.56782375 0.5913542 0.00000000 -0.1253234 row6 -0.09841798 0.000000000 0.00000000 0.0000000 0.00000000 0.4296495 row7 -0.43339582 0.000000000 0.00000000 0.0000000 -0.58754650 0.0000000 row8 0.00000000 0.000000000 0.30978048 0.0000000 1.19398289 0.0000000 row9 0.00000000 0.000000000 0.71363775 -1.6377375 0.00000000 0.0000000 row10 0.00000000 0.140889443 0.89721553 0.8765962 0.00000000 -0.5096981 row11 0.00000000 -1.328911013 0.31974761 0.0000000 0.00000000 0.0000000 row12 0.00000000 0.000000000 0.00000000 0.2452028 0.00000000 0.0000000 row13 0.00000000 0.000000000 0.00000000 0.0000000 0.45844287 0.0000000 row14 0.00000000 0.899797151 0.52030753 1.1334120 -1.12835110 0.0000000 row15 0.00000000 -0.001791288 -0.27372500 0.0000000 -0.33826352 0.0000000 row16 -1.37546205 0.000000000 0.60553942 0.0000000 0.00000000 0.2827660 row17 0.00000000 0.535167688 -1.63388601 0.0000000 0.34711546 0.0000000 row18 -1.27792555 0.000000000 0.05707552 0.5783724 0.82620861 0.5783724 row19 -0.74053887 0.000000000 0.00000000 0.6457555 0.00000000 0.8908779 row20 -0.15262045 -1.487621517 -0.38900923 -1.4876215 -0.45800210 0.0000000 col13 col14 col15 col16 col17 col18 row1 0.0000000 0.00000000 0.09713234 0.00000000 -1.337952181 0.000000000 row2 0.0000000 0.00000000 0.32293191 0.35929955 0.000000000 0.000000000 row3 -0.6159724 0.00000000 0.00000000 0.63679055 -0.461821739 -0.267665725 row4 0.0000000 0.00000000 -0.12081892 -0.36198097 0.705859658 0.705859658 row5 -2.0712336 0.00000000 0.00000000 0.00000000 0.658795528 0.008207962 row6 0.0000000 0.61623541 0.00000000 0.00000000 0.479659876 -0.594854861 row7 0.8193671 0.00000000 -0.99301161 0.00000000 0.000000000 -0.128014172 row8 0.1985548 0.00000000 0.00000000 0.00000000 0.000000000 0.799328702 row9 0.0000000 0.84716914 0.00000000 0.00000000 0.308172640 -1.925419581 row10 -1.0486946 -0.42965542 0.00000000 -0.59670950 0.812057717 -0.222016051 row11 0.0000000 0.05738335 -1.32891101 0.64517001 0.000000000 -0.741124348 row12 0.0000000 0.00000000 -1.06698358 0.00000000 0.000000000 0.000000000 row13 0.9548798 0.07067734 0.86390798 0.00000000 0.000000000 0.560225562 row14 0.3977052 0.84572993 0.00000000 -0.09873168 0.999880609 0.000000000 row15 -1.4368758 0.00000000 0.38767348 -0.21310038 -0.001791288 0.509034336 row16 -1.3754621 -0.27684976 0.00000000 0.00000000 0.639440969 -0.815846264 row17 0.7174892 0.00000000 0.00000000 0.66869908 0.000000000 0.000000000 row18 0.0000000 0.00000000 -0.69013888 0.00000000 -0.114774739 0.000000000 row19 0.0000000 0.00000000 0.00000000 0.00000000 0.846426184 0.000000000 row20 0.0000000 0.70960306 0.00000000 0.19877744 0.000000000 0.270236401 col19 col20 col21 col22 col23 col24 row1 0.518345810 0.00000000 0.0000000 -0.462483443 0.6079580 0.0000000 row2 0.322931906 0.00000000 0.7406671 0.638012952 0.0000000 -0.4879983 row3 0.000000000 0.70578342 0.6833106 -0.903654491 0.0000000 0.4826399 row4 0.000000000 -0.36198097 1.0243134 1.046786245 0.0000000 0.0000000 row5 0.000000000 0.63681662 0.7013551 0.000000000 0.3565147 -1.3780864 row6 0.000000000 -0.66896283 0.0000000 0.000000000 0.0000000 0.0000000 row7 -1.973840863 0.68874696 0.0000000 0.565133008 0.0000000 0.0000000 row8 -0.236763230 0.73263733 0.0000000 0.000000000 0.4098639 0.0000000 row9 0.000000000 0.00000000 -1.4145940 0.343263960 0.0000000 -0.7214468 row10 0.000000000 0.00000000 0.0000000 0.000000000 0.0000000 0.4711311 row11 0.006090054 0.00000000 0.9534714 0.006090054 0.3574879 0.0000000 row12 0.000000000 0.00000000 0.0000000 -0.933452183 -0.1796804 -1.2211343 row13 0.170760795 0.00000000 0.0000000 0.458442868 0.9548798 0.5274357 row14 0.000000000 0.00000000 0.0000000 1.154031289 0.0000000 -1.1283511 row15 0.000000000 0.00000000 0.5912724 0.211782813 0.0000000 0.0000000 row16 0.821762525 0.00000000 -0.9699969 -1.152318501 0.0000000 0.0000000 row17 0.000000000 0.31202414 0.7410197 0.535167688 0.5061802 0.0000000 row18 0.000000000 0.00000000 0.0000000 -0.941453312 0.2036790 -0.9414533 row19 0.000000000 0.00000000 0.0000000 0.000000000 0.0000000 0.0000000 row20 0.000000000 -0.05253699 0.5665022 0.731581967 0.0809944 0.0000000 col25 col26 col27 col28 col29 col30 row1 0.00000000 0.00000000 0.0000000 0.0000000 0.000000000 0.00000000 row2 0.00000000 0.00000000 0.0000000 0.4610822 0.000000000 0.00000000 row3 0.00000000 -0.05635663 0.0000000 0.0000000 0.000000000 0.00000000 row4 0.00000000 0.00000000 0.0000000 -1.3735819 0.000000000 0.00000000 row5 0.08825067 0.00000000 0.0000000 0.0000000 -0.867260775 0.46774029 row6 0.59472921 0.16728519 -0.4006988 0.0000000 0.000000000 0.02418435 row7 0.00000000 0.68874696 0.0000000 0.8193671 0.000000000 -1.12654300 row8 0.00000000 0.00000000 0.8618491 0.6234380 -1.025220590 0.00000000 row9 0.00000000 0.71363775 0.4724757 0.0000000 0.847169141 0.00000000 row10 0.00000000 0.00000000 -1.6083104 -0.4296554 -0.692019680 0.00000000 row11 0.58801160 0.00000000 0.0000000 -0.6357638 0.006090054 0.00000000 row12 0.00000000 0.00000000 0.0000000 0.0000000 0.000000000 0.00000000 row13 0.00000000 0.26173257 0.0000000 0.0000000 0.000000000 -1.77514935 row14 0.25794326 0.15258275 0.0000000 -0.9460295 1.090852387 -0.33989374 row15 0.21178281 0.00000000 0.0000000 0.3876735 -0.213100381 0.69135589 row16 -0.45917132 0.00000000 0.3292860 0.0000000 0.793591648 0.79359165 row17 0.38101701 0.00000000 0.0000000 -1.6338860 0.829967228 0.00000000 row18 0.00000000 -0.32241410 0.0000000 0.3315124 0.000000000 0.60914410 row19 0.72579820 0.00000000 -1.3283255 -0.2297132 0.933437561 -1.32832554 row20 0.79476087 0.00000000 0.0809944 0.4293011 0.000000000 0.51385848 col31 col32 col33 col34 col35 col36 row1 0.2714857 -1.00147994 0.31070644 0.000000000 0.27148573 0.8138100 row2 0.0000000 -0.40795560 -0.02846598 0.000000000 -1.58661060 0.0000000 row3 0.4826399 0.00000000 -0.79829398 0.000000000 -0.70298380 -0.7982940 row4 -1.6612640 0.49822029 0.60741958 0.000000000 -0.45729115 0.0000000 row5 0.0000000 0.16235864 0.00000000 0.441072044 0.00000000 0.0000000 row6 0.0000000 0.09829232 -0.52586199 0.657908107 0.37700572 0.0000000 row7 0.0000000 0.00000000 0.32874423 0.259751359 -0.12801417 0.0000000 row8 0.0000000 -0.23676323 0.00000000 0.000000000 -0.43743393 0.8618491 row9 0.7136377 0.61355429 0.00000000 0.000000000 0.02049057 0.0000000 row10 0.0000000 0.00000000 0.83403662 0.001127501 0.00000000 0.5019028 row11 0.6725690 0.00000000 0.00000000 -1.146589456 0.00000000 0.1971453 row12 0.7712959 0.00000000 0.70067834 0.452842178 -0.44794437 0.6759857 row13 0.0000000 0.00000000 0.00000000 0.000000000 0.00000000 0.0000000 row14 0.0000000 0.00000000 0.00000000 0.951090445 0.00000000 0.7885715 row15 0.4800468 0.00000000 0.00000000 0.000000000 0.00000000 0.7378759 row16 0.0000000 0.00000000 -1.37546205 0.999443703 -2.76175641 1.0883912 row17 -0.0244481 0.00000000 -0.18696703 0.000000000 0.00000000 0.0000000 row18 0.0000000 0.98383755 -1.27792555 0.000000000 0.00000000 0.0000000 row19 0.0000000 0.39444106 0.61758461 0.645755489 0.91238415 0.0000000 row20 0.0000000 0.00000000 0.00000000 0.000000000 0.00000000 0.0000000 col37 col38 col39 col40 col41 col42 row1 -0.2393399 0.51834581 0.0000000 -0.1141767 0.0000000 0.34844677 row2 -0.7756804 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 row3 0.7909412 0.00000000 0.3003183 0.0000000 0.0000000 0.00000000 row4 0.0000000 0.00000000 -2.0667291 0.0000000 0.0000000 0.95369582 row5 0.1623586 -2.47669869 0.5678237 0.0000000 0.0000000 0.00000000 row6 0.0000000 -0.05585836 -1.4421527 -1.4421527 0.0000000 -0.14286974 row7 0.0000000 0.68874696 0.5384648 0.0000000 0.0000000 0.00000000 row8 -1.5360462 0.00000000 -0.5552170 0.0000000 0.4098639 -1.94151132 row9 0.8677884 -0.53912522 0.0000000 0.0000000 -0.3159817 -1.07812172 row10 -0.5967095 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 row11 0.0000000 0.86831356 0.7252127 -0.3733996 0.0000000 0.23970491 row12 0.0000000 0.28294314 0.0000000 0.3193108 0.0000000 0.00000000 row13 0.2617326 -2.18061446 -0.7943201 -1.2643237 0.0000000 0.00000000 row14 1.1540313 0.66340837 0.0000000 -0.2528824 0.0000000 -1.63917672 row15 0.0000000 0.00000000 0.7603488 0.0000000 0.8455066 -0.64841845 row16 0.9271230 1.10944460 -0.2768498 -1.3754621 0.7935916 -0.56453184 row17 -0.3811230 0.23791616 -0.3121302 -1.2284209 0.0000000 0.07086208 row18 0.0000000 0.05707552 0.0000000 -0.2483061 0.0000000 -0.80792192 row19 0.0000000 0.00000000 0.0000000 0.0000000 0.8464262 0.00000000 row20 0.0000000 0.61651264 0.6641407 0.7530882 0.0000000 -0.10132716 col43 col44 col45 col46 col47 col48 row1 0.0000000 0.0000000 0.00000000 0.0000000 0.76618197 0.0000000 row2 0.0000000 0.0000000 0.39439087 0.0000000 0.11813749 -0.7756804 row3 0.0000000 -0.1564401 0.00000000 0.0000000 0.00000000 0.0000000 row4 -0.9681168 -0.3619810 0.01271248 0.4589996 0.00000000 0.0000000 row5 -1.0904043 0.0000000 0.65879553 0.0000000 0.00000000 0.0000000 row6 -0.1893898 0.0000000 0.63728882 0.2000750 0.06192468 0.0000000 row7 0.0000000 -0.1820814 0.00000000 -0.6745579 0.53846476 0.0000000 row8 -2.6346585 0.8917020 0.00000000 0.0000000 0.00000000 0.0000000 row9 -0.2514431 0.0000000 0.00000000 0.7371682 0.82611573 0.0000000 row10 -0.1613914 0.0000000 -0.69201968 -0.5967095 0.00000000 0.0000000 row11 0.1971453 0.9328521 0.00000000 0.0000000 0.00000000 -0.9924388 row12 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 row13 0.0000000 0.7638245 0.00000000 0.0000000 0.00000000 0.5919743 row14 0.0000000 0.0000000 0.00000000 0.0000000 0.89979715 0.0000000 row15 0.8455066 0.0000000 -3.04631373 0.5090343 0.00000000 0.4194222 row16 0.0000000 0.9518157 0.97591321 0.0000000 0.00000000 1.0449061 row17 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 -0.4552310 row18 0.0000000 0.4448410 0.00000000 0.0000000 0.91929903 0.8262086 row19 0.8688990 0.0000000 0.00000000 -1.3283255 0.69982271 0.9742596 row20 0.0000000 0.6165126 -0.89983485 -0.3890092 -0.32447071 0.0000000 col49 col50 row1 0.74148936 0.0000000 row2 0.02282731 0.7406671 row3 -0.61597242 0.0000000 row4 -0.27496960 0.0000000 row5 0.26414134 0.0000000 row6 0.00000000 0.1672852 row7 0.00000000 -0.6745579 row8 0.00000000 0.0000000 row9 0.00000000 0.0000000 row10 0.53175575 0.8765962 row11 -0.85890738 0.3938556 row12 -0.37383639 0.5980242 row13 -2.18061446 0.0000000 row14 -2.04464183 0.0000000 row15 0.32098210 0.2117828 row16 0.99944370 -0.4591713 row17 -2.32703319 0.2756565 row18 0.00000000 -0.4024568 row19 0.00000000 0.0000000 row20 0.00000000 0.1218164 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 2.947390 2.972905 3.100879 2.759876 3.169846 3.233912 3.072453 2.634659 row9 row10 row11 row12 row13 row14 row15 row16 3.024032 2.994605 2.938349 3.012894 2.873762 2.737789 3.046314 2.761756 row17 row18 row19 row20 3.020180 2.887363 2.937763 3.097059 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "rclr" > vegan::decostand(testdata, method = "clr", pseudocount=1) col1 col2 col3 col4 col5 col6 row1 -1.39353914 1.3145111 1.9737567 -1.3935391 -1.3935391 2.518484 row2 2.13100640 -1.3953541 -1.3953541 2.2422320 -1.3953541 -1.395354 row3 -1.51326802 -1.5132680 1.6647858 1.4824643 2.3785523 2.200304 row4 2.26940793 2.3545657 0.7653305 -1.5372546 1.7208420 1.928481 row5 -1.68206970 -1.6820697 2.1680779 -1.6820697 2.1021199 1.090519 row6 -1.64014898 -1.6401490 2.0734231 2.2099986 -1.6401490 -1.640149 row7 1.89126334 2.4710818 1.6035813 -1.4409412 -1.4409412 -1.440941 row8 -1.26398142 -1.2639814 1.7805410 1.1339138 1.7805410 2.319538 row9 2.29945762 -1.4847320 1.6507622 0.7124926 -1.4847320 -1.484732 row10 2.44493286 -1.4670901 -1.4670901 -1.4670901 -1.4670901 2.294110 row11 -1.56183530 -1.5618353 -1.5618353 1.6570405 -1.5618353 -1.561835 row12 -0.98277920 -0.9827792 -0.9827792 2.3130577 -0.9827792 2.012953 row13 -1.24625547 -1.2462555 2.4426240 1.3928019 -1.2462555 2.467317 row14 1.72025314 -0.8446962 -1.5378434 0.4080667 0.2539161 -1.537843 row15 -1.62495846 -1.6249585 -1.6249585 -0.2386641 -1.6249585 -1.624958 row16 -1.77391098 1.1164608 -1.7739110 -1.7739110 -1.7739110 1.059302 row17 -1.60729438 -1.6072944 2.3245312 1.7249101 2.2213470 1.528200 row18 -1.35962740 -1.3596274 -1.3596274 -1.3596274 2.1667331 -1.359627 row19 1.55596354 0.2750297 -0.6412610 1.2305411 -1.3344082 -1.334408 row20 0.08881781 -1.7029417 -1.7029417 -1.7029417 1.5159342 -1.702942 col7 col8 col9 col10 col11 col12 row1 -1.3935391 1.82533669 -0.700391959 2.04044807 -1.3935391 0.8036854 row2 1.8235217 0.68408742 1.823521704 -1.39535412 1.6003782 1.0895525 row3 0.7893171 2.04208004 2.150293626 -1.51326802 -1.5132680 -1.5132680 row4 -1.5372546 1.59823966 0.659970017 -1.53725456 0.9476521 -1.5372546 row5 2.1021199 1.81443786 2.079130413 2.10211993 -1.6820697 1.4089728 row6 1.5379049 -1.64014898 -1.640148979 -1.64014898 -1.6401490 2.0487305 row7 1.2671090 -1.44094117 -1.440941175 -1.44094117 1.1240082 -1.4409412 row8 -1.2639814 -1.26398142 1.731750850 -1.26398142 2.5861662 -1.2639814 row9 -1.4847320 -1.48473202 2.276468099 0.12470590 -1.4847320 -1.4847320 row10 -1.4670901 1.71096369 2.444932861 2.42473015 -1.4670901 1.0978592 row11 -1.5618353 0.22992417 1.734001567 -1.56183530 -1.5618353 -1.5618353 row12 -0.9827792 -0.98277920 -0.982779196 2.31305767 -0.9827792 -0.9827792 row13 -1.2462555 -1.24625547 -1.246255470 -1.24625547 2.1210404 -1.2462555 row14 -1.5378434 2.12571825 1.757993467 2.35397690 0.2539161 -1.5378434 row15 -1.6249585 1.46608399 1.208254882 -1.62495846 1.1476303 -1.6249585 row16 -0.1644731 -1.77391098 1.627286398 -1.77391098 -1.7739110 1.3171315 row17 -1.6072944 1.97622455 0.002143528 -1.60729438 1.7939030 -1.6072944 row18 0.4321321 -1.35962740 1.636104870 2.13688016 2.3780422 2.1368802 row19 0.9681769 -1.33440822 -1.334408221 2.27650969 -1.3344082 2.5157394 row20 1.2927906 0.08881781 1.069647060 0.08881781 1.0051085 -1.7029417 col13 col14 col15 col16 col17 col18 row1 -1.3935391 -1.3935391 1.6975033 -1.3935391 0.3982203 -1.39353914 row2 -1.3953541 -1.3953541 1.9368504 1.9719417 -1.3953541 -1.39535412 row3 1.0516813 -1.5132680 -1.5132680 2.2479321 1.1947822 1.37710374 row4 -1.5372546 -1.5372546 1.1707956 0.9476521 1.9592530 1.95925300 row5 -0.2957753 -1.6820697 -1.6820697 -1.6820697 2.1680779 1.53680612 row6 -1.6401490 2.2310520 -1.6401490 -1.6401490 2.0975206 1.06790122 row7 2.4710818 -1.4409412 0.7562834 -1.4409412 -1.4409412 1.55479110 row8 1.6263903 -1.2639814 -1.2639814 -1.2639814 -1.2639814 2.20175448 row9 -1.4847320 2.4070883 -1.4847320 -1.4847320 1.8825638 -0.09843766 row10 0.6123514 1.1719672 -1.4670901 1.0178165 2.3615513 1.36612320 row11 -1.5618353 1.4826871 0.2299242 2.0490826 -1.5618353 0.74074979 row12 -0.9827792 -0.9827792 1.0966623 -0.9827792 -0.9827792 -0.98277920 row13 2.6038921 1.7494768 2.5149446 -1.2462555 -1.2462555 2.21948043 row14 1.6402104 2.0730745 -1.5378434 1.1702068 2.2233567 -1.53784340 row15 0.1668010 -1.6249585 1.8407774 1.2654133 1.4660840 1.95856048 row16 -0.1644731 0.7910384 -1.7739110 -1.7739110 1.6600762 0.30553056 row17 2.1539057 -1.6072944 -1.6072944 2.1062777 -1.6072944 -1.60729438 row18 -1.3596274 -1.3596274 0.9429577 -1.3596274 1.4735859 -1.35962740 row19 -1.3344082 -1.3344082 -1.3344082 -1.3344082 2.4722543 -1.33440822 row20 -1.7029417 2.1256997 -1.7029417 1.6292628 -1.7029417 1.69825572 col19 col20 col21 col22 col23 col24 row1 2.10296842 -1.3935391 -1.3935391 1.17141022 2.189980 -1.3935391 row2 1.93685039 -1.3953541 2.3423155 2.24223204 -1.395354 1.1695952 row3 -1.51326802 2.3153734 2.2933945 0.78931707 -1.513268 2.0976499 row4 -1.53725456 0.9476521 2.2694079 2.29138684 -1.537255 -1.5372546 row5 -1.68206970 2.1465717 2.2097506 -1.68206970 1.873278 0.2638404 row6 -1.64014898 0.9989084 -1.6401490 -1.64014898 -1.640149 -1.6401490 row7 -0.05464681 2.3432485 -1.4409412 2.22262047 -1.440941 -1.4409412 row8 1.22092523 2.1372160 -1.2639814 -1.26398142 1.827061 -1.2639814 row9 -1.48473202 -1.4847320 0.3070275 1.91646536 -1.484732 0.9131633 row10 -1.46709014 -1.4670901 -1.4670901 -1.46709014 -1.467090 2.0294174 row11 1.43389697 -1.5618353 2.3501877 1.43389697 1.770369 -1.5618353 row12 -0.98277920 -0.9827792 -0.9827792 1.21444538 1.907593 0.9631310 row13 1.84478698 -1.2462555 -1.2462555 2.12104036 2.603892 2.1877317 row14 -1.53784340 -1.5378434 -1.5378434 2.37417961 -1.537843 0.2539161 row15 -1.62495846 -1.6249585 2.0386032 1.67087840 -1.624958 -1.6249585 row16 1.83700693 -1.7739110 0.1719992 0.01784849 -1.773911 -1.7739110 row17 -1.60729438 1.7600014 2.1768952 1.97622455 1.948054 -1.6072944 row18 -1.35962740 -1.3596274 -1.3596274 0.71981414 1.775867 0.7198141 row19 -1.33440822 -1.3344082 -1.3344082 -1.33440822 -1.334408 -1.3344082 row20 -1.70294166 1.3881008 1.9859378 2.14720594 1.515934 -1.7029417 col25 col26 col27 col28 col29 col30 row1 -1.3935391 -1.3935391 -1.3935391 -1.393539139 -1.3935391 -1.3935391 row2 -1.3953541 -1.3953541 -1.3953541 2.070381782 -1.3953541 -1.3953541 row3 -1.5132680 1.5777744 -1.5132680 -1.513268020 -1.5132680 -1.5132680 row4 -1.5372546 -1.5372546 -1.5372546 0.072183352 -1.5372546 -1.5372546 row5 1.6137672 -1.6820697 -1.6820697 -1.682069703 0.7158256 1.9814919 row6 2.2099986 1.7938382 1.2502228 -1.640148979 -1.6401490 1.6556879 row7 -1.4409412 2.3432485 -1.4409412 2.471081831 -1.4409412 0.6385004 row8 -1.2639814 -1.2639814 2.2623791 2.031855443 0.5277780 -1.2639814 row9 -1.4847320 2.2764681 2.0416285 -1.484732017 2.4070883 -1.4847320 row10 -1.4670901 -1.4670901 0.1423478 1.171967186 0.9308051 -1.4670901 row11 1.9935128 -1.5618353 -1.5618353 0.836059973 1.4338970 -1.5618353 row12 -0.9827792 -0.9827792 -0.9827792 -0.982779196 -0.9827792 -0.9827792 row13 -1.2462555 1.9317984 -1.2462555 -1.246255470 -1.2462555 0.1400389 row14 1.5066790 1.4065956 -1.5378434 0.408066750 2.3123042 0.9470633 row15 1.6708784 -1.6249585 -1.6249585 1.840777441 1.2654133 2.1362417 row16 0.6239843 -1.7739110 1.3615832 -1.773910984 1.8096080 1.8096080 row17 1.8266928 -1.6072944 -1.6072944 0.002143528 2.2639066 -1.6072944 row18 -1.3596274 1.2794299 -1.3596274 1.898469135 -1.3596274 2.1667331 row19 2.3544712 -1.3344082 0.4573512 1.438180501 2.5574121 0.4573512 row20 2.2090813 -1.7029417 1.5159342 1.852406399 -1.7029417 1.9346445 col31 col32 col33 col34 col35 col36 row1 1.8645574 0.6859024 1.9022977 -1.3935391 1.8645574 2.3906505 row2 -1.3953541 1.2437032 1.6003782 -1.3953541 0.2140838 -1.3953541 row3 2.0976499 -1.5132680 0.8846273 -1.5132680 0.9716386 0.8846273 row4 -0.1509602 1.7585823 1.8639428 -1.5372546 0.8606407 -1.5372546 row5 -1.6820697 1.6852261 -1.6820697 1.9555165 -1.6820697 -1.6820697 row6 -1.6401490 1.7271469 1.1324397 2.2718740 1.9974372 -1.6401490 row7 -1.4409412 -1.4409412 1.9930460 1.9263547 1.5547911 -1.4409412 row8 -1.2639814 1.2209252 -1.2639814 -1.2639814 1.0386037 2.2623791 row9 2.2764681 2.1788296 -1.4847320 -1.4847320 1.6063104 -1.4847320 row10 -1.4670901 -1.4670901 2.3830575 1.5774323 -1.4670901 2.0592704 row11 2.0757509 -1.5618353 -1.5618353 0.3840748 -1.5618353 1.6162185 row12 2.8238833 -0.9827792 2.7548904 2.5137284 1.6562781 2.7307929 row13 -1.2462555 -1.2462555 -1.2462555 -1.2462555 -1.2462555 -1.2462555 row14 -1.5378434 -1.5378434 -1.5378434 2.1757287 -1.5378434 2.0175047 row15 1.9303896 -1.6249585 -1.6249585 -1.6249585 -1.6249585 2.1817040 row16 -1.7739110 -1.7739110 -0.1644731 2.0102786 -1.0807638 2.0972900 row17 1.4372281 -1.6072944 1.2830774 -1.6072944 -1.6072944 -1.6072944 row18 -1.3596274 2.5321929 0.4321321 -1.3596274 -1.3596274 -1.3596274 row19 -1.3344082 2.0328876 2.2491107 2.2765097 2.5367928 -1.3344082 row20 -1.7029417 -1.7029417 -1.7029417 -1.7029417 -1.7029417 -1.7029417 col37 col38 col39 col40 col41 col42 row1 1.3790496 2.1029684 -1.3935391 1.4968326 -1.3935391 1.9386654 row2 0.9072310 -1.3953541 -1.3953541 -1.3953541 -1.3953541 -1.3953541 row3 2.3987550 -1.5132680 1.9207192 -1.5132680 -1.5132680 -1.5132680 row4 -1.5372546 -1.5372546 -0.4386423 -1.5372546 -1.5372546 2.2004151 row5 1.6852261 -0.5834574 2.0791304 -1.6820697 -1.6820697 -1.6820697 row6 -1.6401490 1.5787268 0.3057612 0.3057612 -1.6401490 1.4953452 row7 -1.4409412 2.3432485 2.1966450 -1.4409412 -1.4409412 -1.4409412 row8 0.1223129 -1.2639814 0.9332432 -1.2639814 1.8270610 -0.1653691 row9 2.4272910 1.0802173 -1.4847320 -1.4847320 1.2878567 0.5947095 row10 1.0178165 -1.4670901 -1.4670901 -1.4670901 -1.4670901 -1.4670901 row11 -1.5618353 2.2668061 2.1270442 1.0772220 -1.5618353 1.6570405 row12 -0.9827792 2.3494253 -0.9827792 2.3845166 -0.9827792 -0.9827792 row13 1.9317984 -0.1476432 0.9509691 0.5455040 -1.2462555 -1.2462555 row14 2.3741796 1.8961438 -1.5378434 1.0271060 -1.5378434 -0.1515490 row15 -1.6249585 -1.6249585 2.2036829 -1.6249585 2.2870645 0.8599482 row16 1.9396611 2.1179093 0.7910384 -0.1644731 1.8096080 0.5286741 row17 1.1007558 1.6885425 1.1652943 0.3386158 -1.6072944 1.5281998 row18 -1.3596274 1.6361049 -1.3596274 1.3484228 -1.3596274 0.8375972 row19 -1.3344082 -1.3344082 -1.3344082 -1.3344082 2.4722543 -1.3344082 row20 -1.7029417 2.0347280 2.0812480 2.1682593 -1.7029417 1.3415808 col43 col44 col45 col46 col47 col48 row1 -1.3935391 -1.3935391 -1.3935391 -1.3935391 2.3441305 -1.3935391 row2 -1.3953541 -1.3953541 2.0058433 -1.3953541 1.7401401 0.9072310 row3 -1.5132680 1.4824643 -1.5132680 -1.5132680 -1.5132680 -1.5132680 row4 0.4086556 0.9476521 1.2959588 1.7208420 -1.5372546 -1.5372546 row5 0.5151549 -1.6820697 2.1680779 -1.6820697 -1.6820697 -1.6820697 row6 1.4508935 -1.6401490 2.2516713 1.8255869 1.6920555 -1.6401490 row7 -1.4409412 1.5034978 -1.4409412 1.0439655 2.1966450 -1.4409412 row8 -0.5708342 2.2913666 -1.2639814 -1.2639814 -1.2639814 -1.2639814 row9 1.3484813 -1.4847320 -1.4847320 2.2994576 2.3864690 -1.4847320 row10 1.4232816 -1.4670901 0.9308051 1.0178165 -1.4670901 -1.4670901 row11 1.6162185 2.3299850 -1.5618353 -1.5618353 -1.5618353 0.5176062 row12 -0.9827792 -0.9827792 -0.9827792 -0.9827792 -0.9827792 -0.9827792 row13 -1.2462555 2.4173062 -1.2462555 -1.2462555 -1.2462555 2.2502521 row14 -1.5378434 -1.5378434 -1.5378434 -1.5378434 2.1257182 -1.5378434 row15 2.2870645 -1.6249585 -0.9318113 1.9585605 -1.6249585 1.8715491 row16 -1.7739110 1.9637586 1.9872891 -1.7739110 -1.7739110 2.0547304 row17 -1.6072944 -1.6072944 -1.6072944 -1.6072944 -1.6072944 1.0317629 row18 -1.3596274 2.0076684 -1.3596274 -1.3596274 2.4690140 2.3780422 row19 2.4942332 -1.3344082 -1.3344082 0.4573512 2.3291534 2.5974174 row20 -1.7029417 2.0347280 0.5996434 1.0696471 1.1302717 -1.7029417 col49 col50 row1 2.3200329 -1.3935391 row2 1.6491683 2.3423155 row3 1.0516813 -1.5132680 row4 1.0276948 -1.5372546 row5 1.7836662 -1.6820697 row6 -1.6401490 1.7938382 row7 -1.4409412 1.0439655 row8 -1.2639814 -1.2639814 row9 -1.4847320 -1.4847320 row10 2.0882579 2.4247302 row11 0.6353893 1.8054605 row12 1.7252710 2.6548070 row13 -0.1476432 -1.2462555 row14 -0.4392311 -1.5378434 row15 1.7762389 1.6708784 row16 2.0102786 0.6239843 row17 -0.5086821 1.7249101 row18 -1.3596274 1.2053220 row19 -1.3344082 -1.3344082 row20 -1.7029417 1.5551549 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 1.3935391 1.3953541 1.5132680 1.5372546 1.6820697 1.6401490 1.4409412 1.2639814 row9 row10 row11 row12 row13 row14 row15 row16 1.4847320 1.4670901 1.5618353 0.9827792 1.2462555 1.5378434 1.6249585 1.7739110 row17 row18 row19 row20 1.6072944 1.3596274 1.3344082 1.7029417 attr(,"parameters")$pseudocount [1] 1 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "clr" > # Expect error > class(try(vegan::decostand(testdata, method = "clr")))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > class(try(vegan::decostand(testdata, method = "clr", pseudocount=0)))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > > # Tests that clr robust gives values that are approximately same if only > # one value per sample are changed to zero > # Adds pseudocount > test <- testdata+1 > test2 <- test; test2[,1] <- 0 > > # clr robust transformations > test <- vegan::decostand(test, method = "rclr") > test2 <- vegan::decostand(test2, method = "rclr") > > # Removes first cols > test <- test[, -1] > test2 <- test2[, -1] > > # Expect high correlation > cor(unlist(test), unlist(test2)) > 0.99 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 col15 col16 col17 col18 col19 col20 col21 col22 col23 col24 col25 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 col27 col28 col29 col30 col31 col32 col33 col34 col35 col36 col37 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 col39 col40 col41 col42 col43 col44 col45 col46 col47 col48 col49 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 col2 FALSE col3 FALSE col4 FALSE col5 FALSE col6 FALSE col7 FALSE col8 FALSE col9 FALSE col10 FALSE col11 FALSE col12 FALSE col13 FALSE col14 FALSE col15 FALSE col16 FALSE col17 FALSE col18 FALSE col19 FALSE col20 FALSE col21 FALSE col22 FALSE col23 FALSE col24 FALSE col25 FALSE col26 FALSE col27 FALSE col28 FALSE col29 FALSE col30 FALSE col31 FALSE col32 FALSE col33 FALSE col34 FALSE col35 FALSE col36 FALSE col37 FALSE col38 FALSE col39 FALSE col40 FALSE col41 FALSE col42 FALSE col43 FALSE col44 FALSE col45 FALSE col46 FALSE col47 FALSE col48 FALSE col49 FALSE col50 TRUE > > ############################# NAMES #################################### > > # Tests that dimensins have correct names > all(rownames(vegan::decostand(testdata+1, method = "clr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "clr", pseudocount=1)) == colnames(testdata)) [1] TRUE > all(rownames(vegan::decostand(testdata, method = "rclr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "rclr")) == colnames(testdata)) [1] TRUE > > ######################################################################## > > # Count vs. Relative data > > # CLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "clr") > a2 <- vegan::decostand(relative.with.pseudo, method = "clr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # rCLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "rclr") > a2 <- vegan::decostand(relative.with.pseudo, method = "rclr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # ALR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "alr") > a2 <- vegan::decostand(relative.with.pseudo, method = "alr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] FALSE > > ####### # ALR transformation drops one feature ################ > ncol(vegan::decostand(testdata.with.pseudo, "alr")) == ncol(testdata.with.pseudo)-1 [1] FALSE > > > > > > > > proc.time() user system elapsed 0.84 0.10 0.95