R Under development (unstable) (2024-08-27 r87062 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > ############################### CLR #################################### > # Calculates clr-transformation. Should be equal. > > # Test data > # data(varespec) > testdata <- matrix(round(runif(1000, 0, 100)), nrow=20) > testdata <- testdata - 50 > testdata[testdata < 0] <- 0 > rownames(testdata) <- paste0("row", seq_len(nrow(testdata))) > colnames(testdata) <- paste0("col", seq_len(ncol(testdata))) > testdata.with.pseudo <- testdata + 1 > > # Calculates relative abundance table > relative <- vegan::decostand(testdata, "total") > relative.with.pseudo <- vegan::decostand(testdata+1, "total") > > # CLR data > x.clr <- vegan::decostand(testdata+1, method = "clr") > x.rclr <- vegan::decostand(testdata, method = "rclr") > x.clr.pseudo <- vegan::decostand(testdata, method = "clr", pseudocount=1) > > max(abs(x.clr - x.clr.pseudo))<1e-6 [1] TRUE > max(abs(vegan::decostand(testdata+1, method = "clr", pseudocount=0)-x.clr.pseudo))<1e-6 [1] TRUE > > # Tests clr > alt.clr <- t(apply(as.matrix(relative.with.pseudo), 1, FUN=function(x){ + log(x) - mean(log(x))})) > max(abs(x.clr-alt.clr)) < 1e-6 [1] TRUE > all((x.rclr==0) == (testdata==0)) [1] TRUE > > # Expect that error does not occur > vegan::decostand(testdata, method = "rclr") col1 col2 col3 col4 col5 col6 row1 0.0000000 0.0000000 0.0000000 0.00000000 0.68645464 0.00000000 row2 -1.0484992 0.0000000 -1.3361813 -0.03689827 -0.13220845 0.00000000 row3 0.0000000 0.4890304 -0.1040333 0.00000000 0.10954076 -0.20411680 row4 0.0000000 0.0000000 0.0000000 0.59519516 0.05619866 -1.88971149 row5 0.0000000 0.0000000 0.0000000 -2.89523658 -1.28579867 0.19580587 row6 0.0000000 -1.2698511 0.5684283 0.00000000 0.00000000 -0.73085464 row7 0.0000000 0.0000000 0.0000000 0.00000000 -0.22695995 0.00000000 row8 0.7703369 0.0000000 0.0000000 0.00000000 0.74734741 0.77033693 row9 -1.5049007 0.9800060 0.0000000 0.00000000 0.47610080 -0.05798168 row10 0.0000000 0.4096642 1.0433880 0.32962150 -0.28348298 0.00000000 row11 0.7008636 0.3971812 0.0000000 0.00000000 0.29539850 -0.14643425 row12 -0.4186410 0.0000000 0.5798878 0.74896415 0.00000000 0.37628887 row13 0.0000000 0.0000000 0.0000000 0.00000000 -1.03142624 0.00000000 row14 0.0000000 0.0000000 0.1776279 0.29898877 0.00000000 0.00000000 row15 0.0000000 -0.4111861 -0.5782401 0.00000000 0.63478250 0.00000000 row16 0.0000000 0.0000000 0.1489707 0.00000000 0.00000000 -0.12728263 row17 0.0000000 0.0000000 0.3344868 0.77385344 -0.14243729 0.26302782 row18 0.0000000 0.0000000 0.8918384 0.74665644 1.06511017 0.00000000 row19 0.0000000 0.0000000 0.8272681 0.22113225 1.06843011 0.00000000 row20 0.1688399 0.6177901 0.3229905 0.06347934 0.00000000 0.00000000 col7 col8 col9 col10 col11 col12 row1 0.7716124 0.5933642 0.00000000 0.00000000 0.4633111 0.00000000 row2 0.7222069 0.7007007 0.58563134 0.00000000 0.0000000 0.00000000 row3 0.0000000 0.0000000 -0.31534244 0.00000000 0.1472811 -0.44050558 row4 0.0000000 0.1251915 1.20133096 -0.79109920 1.2883423 0.25035467 row5 0.0000000 0.0000000 0.00000000 0.24025764 0.0000000 -0.94932643 row6 0.0000000 0.0000000 0.00000000 0.65543972 0.0000000 0.00000000 row7 0.0000000 0.4322857 -0.04463839 0.00000000 0.0000000 0.00000000 row8 0.0000000 0.0000000 0.00000000 0.48265486 0.0000000 -0.44890335 row9 0.0000000 -1.0994356 0.00000000 0.00000000 0.0000000 0.05324395 row10 0.0000000 0.8404471 0.55276505 0.00000000 -1.2389944 0.00000000 row11 0.0000000 0.0000000 0.85501429 0.00000000 0.6267556 0.85501429 row12 0.0000000 0.0000000 0.79244926 0.00000000 -0.7551132 0.00000000 row13 0.0000000 0.0000000 0.48839951 0.80685324 -0.3382791 0.91448390 row14 0.0000000 0.2093766 -0.31192031 0.14483809 0.5048408 0.07584522 row15 0.0000000 0.6073835 0.00000000 0.76153421 -2.9761354 0.00000000 row16 0.0000000 -0.8204298 0.54287503 -0.73341843 0.6318225 0.00000000 row17 0.0000000 0.0000000 -1.64651469 0.01171339 -0.3937517 0.52253901 row18 0.8362686 0.0000000 0.45897437 0.53901707 -2.0259323 0.00000000 row19 -0.3666544 -1.9760923 0.88610855 0.00000000 0.1033492 0.00000000 row20 -1.0351329 0.0000000 0.00000000 -1.03513295 0.0000000 0.00000000 col13 col14 col15 col16 col17 col18 row1 0.0000000 0.0000000 -0.7223126 0.4061527 0.7509932 0.1378887 row2 0.2732567 0.0000000 0.0000000 0.0000000 0.4829772 -0.2947274 row3 0.0000000 0.2854314 0.0000000 -1.7622614 0.3171801 -0.2041168 row4 0.0000000 0.8511285 0.0000000 0.0000000 0.0000000 0.0000000 row5 -1.1034771 0.8424330 -1.7966243 0.6012710 0.7683251 0.5704993 row6 0.0000000 0.6554397 0.0000000 0.0000000 0.6760590 0.6554397 row7 -1.3255722 0.0000000 0.0000000 0.0000000 0.3971944 -0.1017968 row8 0.0000000 0.0000000 0.7928098 0.0000000 0.0000000 0.7473474 row9 0.0000000 0.0000000 0.2442992 0.0000000 -0.4062884 0.0000000 row10 0.0000000 0.3704435 -0.2093750 0.6480752 -0.6512078 0.0000000 row11 0.0000000 -0.7342209 0.5741119 0.0000000 -0.3977487 0.6007801 row12 0.0000000 0.5258206 -0.4927490 0.7035018 0.3095975 0.0000000 row13 0.0000000 0.8293261 -0.4123870 0.7362357 0.0000000 0.6061825 row14 0.0000000 0.0000000 0.0000000 0.0000000 0.1776279 0.0000000 row15 -0.2035467 0.5203722 0.2819611 0.0000000 0.0000000 0.0000000 row16 0.5428750 0.0000000 0.0000000 0.6528759 -2.5251779 0.5883374 row17 -0.4678597 -1.0868989 0.8173386 0.0000000 0.0000000 -1.0868989 row18 -2.7190795 0.3254430 0.1712923 0.9444822 -0.4164944 0.0000000 row19 0.0000000 -2.6692395 0.0000000 0.8861086 0.0000000 0.0000000 row20 0.2016297 -0.7474509 -0.9297724 0.0000000 0.0000000 0.0000000 col19 col20 col21 col22 col23 col24 row1 0.43514021 0.0000000 -0.0291654 0.6409923 0.0000000 0.0000000 row2 0.00000000 0.0000000 -0.4198905 0.5356209 0.3685668 0.7432603 row3 0.00000000 -0.5836064 0.0000000 0.0000000 0.1836487 0.6356339 row4 -2.58285867 0.2503547 -2.5828587 -1.8897115 -0.6369485 0.0000000 row5 0.00000000 0.0000000 0.0000000 0.7683251 0.8424330 -0.5926515 row6 -0.91317620 0.0000000 0.0000000 0.6554397 0.0000000 -0.2200290 row7 0.53072575 -0.2269599 -0.3700608 0.0000000 0.0000000 0.0000000 row8 0.00000000 0.0000000 -0.7112676 0.0000000 0.0000000 0.1216415 row9 0.00000000 0.5427922 0.0000000 0.7976844 0.2442992 0.0000000 row10 0.00000000 0.0000000 -0.3635257 0.7069157 0.0000000 0.0000000 row11 0.00000000 0.0000000 0.0000000 0.0000000 0.4895545 0.0000000 row12 0.20039820 0.0000000 0.0000000 0.0000000 -0.8604738 0.0000000 row13 0.80685324 0.8938646 0.0000000 -0.8978949 0.0000000 0.4566508 row14 0.00000000 0.0000000 0.0000000 -0.3659875 -0.2606270 0.0000000 row15 -0.03169643 -0.4111861 0.3197015 0.0000000 0.2019184 0.8080542 row16 -0.12728263 0.4452366 -0.2225928 -0.9157400 0.5883374 0.5658646 row17 0.00000000 0.0000000 0.4011782 -0.7302240 0.1026852 0.0000000 row18 0.00000000 0.0000000 0.0000000 -2.7190795 0.0000000 -0.2341728 row19 0.94167840 0.0000000 -1.9760923 0.5088143 1.0196399 1.0919606 row20 0.00000000 0.0000000 0.2641500 0.2333784 0.0000000 0.6594628 col25 col26 col27 col28 col29 col30 row1 -1.0407663 -0.4121576 -0.12447558 0.00000000 0.00000000 0.21199666 row2 0.4555782 -1.3361813 0.00000000 0.00000000 0.00000000 0.00000000 row3 0.0000000 0.0000000 -0.20411680 0.00000000 0.00000000 0.00000000 row4 0.0000000 0.1897300 0.00000000 0.81833871 0.00000000 0.00000000 row5 0.0000000 0.8424330 0.10049569 0.00000000 0.00000000 0.97596443 row6 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 row7 0.3608267 -1.1432507 0.95681015 0.00000000 0.00000000 0.64850879 row8 0.0000000 0.7238169 0.42013450 0.00000000 0.00000000 0.54149536 row9 0.6351655 -0.9452849 0.10453725 0.69232391 0.00000000 0.10453725 row10 0.0000000 0.7350866 0.00000000 0.00000000 -1.23899442 0.00000000 row11 0.7918354 0.0000000 -0.09236703 0.00000000 0.00000000 0.70086361 row12 -1.6714040 -0.0131759 0.43880922 0.00000000 -1.95908605 0.00000000 row13 0.8068532 0.5191712 0.00000000 -0.14412305 0.00000000 0.01839588 row14 0.0000000 0.6556637 0.00000000 0.03947758 0.65566371 0.27000123 row15 0.0000000 -0.5782401 0.42506197 0.00000000 -0.14292207 0.87401219 row16 0.4452366 0.5193445 0.58833741 0.33702298 0.14897075 0.11387943 row17 0.0000000 0.0000000 0.40117816 0.00000000 -0.83558447 -0.26022033 row18 0.7149077 -0.9273200 0.41641475 0.05350926 0.05350926 0.00000000 row19 0.0000000 0.0000000 -1.05980160 0.00000000 0.00000000 0.00000000 row20 0.5053121 0.0000000 -0.18783509 0.00000000 0.00000000 0.00000000 col31 col32 col33 col34 col35 col36 row1 0.0000000 0.00000000 0.31377935 0.00000000 -0.7223126 0.01528637 row2 0.0000000 0.67872177 0.50964544 0.00000000 0.0000000 0.09093510 row3 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.14728108 row4 0.0000000 0.00000000 1.26728893 0.00000000 0.0000000 0.63601715 row5 0.9965837 -0.81579504 0.60127098 0.00000000 0.0000000 0.14928586 row6 -0.8178660 0.52190832 0.15153454 0.00000000 0.0000000 0.33958677 row7 0.0000000 0.00000000 0.36082672 0.00000000 0.6203379 0.00000000 row8 -1.6275583 0.00000000 0.31835180 -1.91524042 0.5125078 0.83629490 row9 0.2442992 0.82237704 0.00000000 0.36690151 0.0000000 0.44100948 row10 -1.2389944 1.04338796 0.00000000 0.00000000 0.0000000 0.00000000 row11 0.0000000 0.39718119 0.00000000 -0.73422092 0.0000000 0.00000000 row12 -2.3645512 0.00000000 0.49764972 0.40803756 0.0000000 0.00000000 row13 0.0000000 0.00000000 0.28076014 0.35486812 0.6602498 -1.36789848 row14 0.0000000 -1.05913471 -0.85846402 -0.07830546 0.0000000 0.00000000 row15 0.0000000 0.00000000 0.00000000 0.39116042 -0.8966939 0.00000000 row16 0.0000000 -0.44573636 0.00000000 -1.27241493 0.0000000 0.33702298 row17 0.0000000 0.87921396 0.00000000 0.00000000 -0.5479024 0.00000000 row18 0.0000000 0.27665281 0.00000000 0.00000000 0.7149077 0.91850670 row19 1.0684301 1.15940189 0.03881069 0.00000000 0.0000000 0.00000000 row20 0.0000000 -0.05430369 0.00000000 0.40522864 0.0000000 0.00000000 col37 col38 col39 col40 col41 col42 row1 -0.9229833 0.54335380 -0.2869945 -1.7339135 -0.12447558 0.7918152 row2 0.0000000 0.00000000 0.7638796 0.0000000 0.00000000 0.6097289 row3 0.0000000 0.00000000 0.0000000 0.2854314 0.00000000 0.0000000 row4 -0.7910992 0.00000000 0.4616638 0.7493458 0.00000000 0.0000000 row5 0.4006003 0.00000000 0.0000000 -0.1871864 0.00000000 -0.8157950 row6 0.5219083 -0.17123886 0.0000000 0.0000000 0.33958677 0.5219083 row7 0.0000000 0.00000000 0.5614974 0.0000000 -0.98910000 0.0000000 row8 -1.4044148 0.00000000 0.0000000 0.0000000 0.51250782 -1.9152404 row9 -0.2521377 -0.69397045 0.5427922 0.1045372 0.00000000 0.0000000 row10 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 row11 0.8343950 -0.32875581 0.0000000 0.0986882 -0.20359267 0.0000000 row12 0.6311811 0.03334412 0.0000000 0.0000000 0.49764972 0.6058633 row13 -1.8787241 0.45665081 -1.8787241 0.7362357 0.00000000 0.0000000 row14 0.1448381 0.00000000 -1.6469214 0.0000000 0.27000123 -0.4837706 row15 0.6874262 -0.08576365 0.0000000 0.0000000 -0.77891083 0.6347825 row16 0.1138794 0.00000000 0.0000000 0.3651939 -0.04027125 0.0000000 row17 0.7738534 0.49355148 0.2630278 0.7738534 0.75138059 0.0000000 row18 0.0000000 -0.32118419 0.0000000 0.0000000 0.41641475 0.0000000 row19 0.0000000 -1.28294515 0.8272681 0.0000000 -0.58979797 1.2019615 row20 -0.6674082 0.00000000 0.2940030 0.0000000 0.00000000 0.0000000 col43 col44 col45 col46 col47 col48 row1 -0.02916540 0.00000000 0.000000000 -0.5552585 -0.4121576 -0.28699451 row2 0.00000000 0.00000000 -1.182030575 0.0000000 0.7007007 -2.43479354 row3 0.48903038 -0.01306157 0.000000000 0.0000000 0.2526416 0.48903038 row4 0.78443716 0.91364889 0.189730048 0.8183387 0.0000000 1.05472749 row5 0.66011148 1.01678643 0.818335488 0.0000000 0.0000000 0.00000000 row6 0.49781077 -0.08026708 0.000000000 0.0000000 0.0000000 -1.42400183 row7 0.00000000 0.00000000 0.009428829 0.0000000 0.0000000 0.00000000 row8 0.83629490 0.16420113 -1.222093236 -0.4489033 0.0000000 0.07718975 row9 -0.40628838 -1.79258274 -1.504900665 0.5745409 0.0000000 0.00000000 row10 0.00000000 0.00000000 0.000000000 0.0000000 -0.1403821 0.00000000 row11 -0.09236703 -0.32875581 -0.471856655 -2.3436588 -2.3436588 0.00000000 row12 0.00000000 0.00000000 0.605863308 0.5798878 0.0000000 0.00000000 row13 0.54902413 0.00000000 -1.878724105 -0.7801118 -1.1855769 0.00000000 row14 0.27000123 0.17762791 0.177627914 -0.2118369 0.0000000 0.55030320 row15 0.60738353 -0.57824014 0.000000000 0.0000000 0.4896005 0.00000000 row16 0.00000000 0.00000000 0.000000000 0.0000000 0.0000000 0.00000000 row17 0.26302782 0.49355148 0.000000000 0.1452448 0.5225390 0.00000000 row18 0.00000000 0.00000000 -1.332785102 0.0000000 0.6131250 0.00000000 row19 -1.28294515 1.18090809 0.000000000 0.4662547 -2.6692395 0.00000000 row20 0.00000000 0.13493831 0.000000000 0.1688399 0.3229905 0.00000000 col49 col50 row1 0.0000000 0.6409923 row2 0.0000000 0.0000000 row3 0.0000000 0.0000000 row4 -2.5828587 1.2457827 row5 0.0000000 -0.9493264 row6 -1.6063234 0.4731182 row7 -0.4501035 0.0000000 row8 0.0000000 0.3183518 row9 0.6923239 0.0000000 row10 -0.5458472 -0.7689908 row11 0.0000000 0.0000000 row12 0.0000000 0.0000000 row13 0.8728112 0.0000000 row14 0.2989888 0.1776279 row15 0.4578518 -1.0302253 row16 0.0000000 -0.4457364 row17 -0.5479024 -1.2410496 row18 0.5390171 0.0000000 row19 0.0000000 0.3752829 row20 0.2940030 0.0000000 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 3.120208 3.127941 3.148556 2.582859 2.895237 3.215761 2.935010 3.013853 row9 row10 row11 row12 row13 row14 row15 row16 2.891195 2.848432 3.036806 3.057698 2.977336 3.256359 2.976135 3.218325 row17 row18 row19 row20 3.032809 2.719079 2.669240 3.232358 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "rclr" > vegan::decostand(testdata, method = "clr", pseudocount=1) col1 col2 col3 col4 col5 col6 row1 -1.8404004 -1.8404004 -1.8404004 -1.8404004 1.9882410 -1.8404004 row2 0.6645783 -1.5326463 0.4132638 1.6028479 1.5118761 -1.5326463 row3 -1.3430921 2.3204696 1.7479504 -1.3430921 1.9527448 1.6526402 row4 -1.5291142 -1.5291142 -1.5291142 1.6897616 1.1789360 -0.4305019 row5 -1.6717938 -1.6717938 -1.6717938 -0.9786466 0.1199657 1.4637004 row6 -1.5033505 0.5760910 2.3033120 -1.5033505 -1.5033505 1.0615989 row7 -1.1391814 -1.1391814 -1.1391814 -1.1391814 1.6334074 -1.1391814 row8 2.2014029 -1.6052596 -1.6052596 -1.6052596 2.1789300 2.2014029 row9 -0.1093110 2.1730714 -1.7187489 -1.7187489 1.6824485 1.1716229 row10 -1.1684568 2.1273800 2.7435662 2.0504190 1.4706005 -1.1684568 row11 2.1447564 1.8492922 -1.6164437 -1.6164437 1.7508521 1.3279953 row12 1.1433592 -1.5646910 2.0988707 2.2639504 -1.5646910 1.9010449 row13 -1.8320824 -1.8320824 -1.8320824 -1.8320824 0.2473592 -1.8320824 row14 -1.8481861 -1.8481861 1.6175498 1.7353329 -1.8481861 -1.8481861 row15 -1.7692929 0.8697644 0.7156137 -1.7692929 1.8682932 -1.7692929 row16 -1.8980901 -1.8980901 1.5031072 -1.8980901 -1.8980901 1.2374041 row17 -1.9171994 -1.9171994 1.4839979 1.9114420 1.0272395 1.4150051 row18 -1.5315316 -1.5315316 2.1060546 1.9649760 2.2751309 -1.5315316 row19 -1.5143633 -1.5143633 2.0119973 1.4300757 2.2468369 -1.5143633 row20 1.9921334 2.4293472 2.1416651 1.8903507 -1.4418538 -1.4418538 col7 col8 col9 col10 col11 col12 row1 2.0716226 1.8972692 -1.8404004 -1.8404004 1.7705175 -1.8404004 row2 2.3385547 2.3175013 2.2050233 -1.5326463 -1.5326463 -1.5326463 row3 -1.3430921 -1.3430921 1.5472797 -1.3430921 1.9891124 1.4294966 row4 -1.5291142 1.2434745 2.2775483 0.4167960 2.3627061 1.3612576 row5 -1.6717938 -1.6717938 -1.6717938 1.5062600 -1.6717938 0.4076477 row6 -1.5033505 -1.5033505 -1.5033505 2.3884698 -1.5033505 -1.5033505 row7 -1.1391814 2.2620160 1.8052576 -1.1391814 -1.1391814 -1.1391814 row8 -1.6052596 -1.6052596 -1.6052596 1.9211009 -1.6052596 1.0337977 row9 -1.7187489 0.2271613 -1.7187489 -1.7187489 -1.7187489 1.2769834 row10 -1.1684568 2.5451152 2.2655304 -1.1684568 0.6233027 -1.1684568 row11 -1.6164437 -1.6164437 2.2955793 -1.6164437 2.0724357 2.2955793 row12 -1.5646910 -1.5646910 2.3065100 -1.5646910 0.8332043 -1.5646910 row13 -1.8320824 -1.8320824 1.6644252 1.9745801 0.8759678 2.0799406 row14 -1.8481861 1.6483215 1.1475462 1.5858012 1.9360036 1.5191098 row15 -1.7692929 1.8416250 -1.7692929 1.9919072 -1.0761457 -1.7692929 row16 -1.8980901 0.5868165 1.8860995 0.6668592 1.9731109 -1.8980901 row17 -1.9171994 -1.9171994 -0.3077615 1.1738430 0.7908508 1.6663195 row18 2.0519874 -1.5315316 1.6873443 1.7643053 -0.4329193 -1.5315316 row19 0.8835320 -0.4157510 2.0691557 -1.5143633 1.3188501 -1.5143633 row20 0.8607313 -1.4418538 -1.4418538 0.8607313 -1.4418538 -1.4418538 col13 col14 col15 col16 col17 col18 row1 -1.8404004 -1.8404004 0.6445063 1.7149477 2.0514199 1.4554365 row2 1.9013409 -1.5326463 -1.5326463 -1.5326463 2.1049398 1.3577254 row3 -1.3430921 2.1226438 -1.3430921 0.2663458 2.1534155 1.6526402 row4 -1.5291142 1.9366217 -1.5291142 -1.5291142 -1.5291142 -1.5291142 row5 0.2741163 2.0894063 -0.2854994 1.8545667 2.0170857 1.8247138 row6 -1.5033505 2.3884698 -1.5033505 -1.5033505 2.4086725 2.3884698 row7 0.6525781 -1.1391814 -1.1391814 -1.1391814 2.2281145 1.7511904 row8 -1.6052596 -1.6052596 2.2233818 -1.6052596 -1.6052596 2.1789300 row9 -1.7187489 -1.7187489 1.4593049 -1.7187489 0.8462005 -1.7187489 row10 -1.1684568 2.0896397 1.5395934 2.3579037 1.1341283 -1.1684568 row11 -1.6164437 0.7814515 2.0211424 -1.6164437 1.0916065 2.0471179 row12 -1.5646910 2.0462269 1.0743663 2.2194986 1.8365064 -1.5646910 row13 -1.8320824 1.9965590 0.8069750 1.9055873 -1.8320824 1.7788355 row14 -1.8481861 -1.8481861 -1.8481861 -1.8481861 1.6175498 -1.8481861 row15 1.0639204 1.7570676 1.5265439 -1.7692929 -1.7692929 -1.7692929 row16 1.8860995 -1.8980901 -1.8980901 1.9937302 -0.7994779 1.9305513 row17 0.7218579 0.1622421 1.9540016 -1.9171994 -1.9171994 0.1622421 row18 -0.8383844 1.5595109 1.4129074 2.1573479 0.8663637 -1.5315316 row19 -1.5143633 -0.8212161 -1.5143633 2.0691557 -1.5143633 -1.5143633 row20 2.0238821 1.1230955 0.9560415 -1.4418538 -1.4418538 -1.4418538 col19 col20 col21 col22 col23 col24 row1 1.7431186 -1.8404004 1.2950938 1.9437893 -1.8404004 -1.8404004 row2 -1.5326463 -1.5326463 1.2399424 2.1562331 1.9937142 2.3591740 row3 -1.3430921 1.2959652 -1.3430921 -1.3430921 2.0242037 2.4635704 row4 -0.8359670 1.3612576 -0.8359670 -0.4305019 0.5503274 -1.5291142 row5 -1.6717938 -1.6717938 -1.6717938 2.0170857 2.0894063 0.7261015 row6 0.8945448 -1.5033505 -1.5033505 2.3884698 -1.5033505 1.5411719 row7 2.3573262 1.6334074 1.4998760 -1.1391814 -1.1391814 -1.1391814 row8 -1.6052596 -1.6052596 0.7926357 -1.6052596 -1.6052596 1.5727942 row9 -1.7187489 1.7469870 -1.7187489 1.9948232 1.4593049 -1.7187489 row10 -1.1684568 -1.1684568 1.3964925 2.4150621 -1.1684568 -1.1684568 row11 -1.6164437 -1.6164437 -1.6164437 -1.6164437 1.9389043 -1.6164437 row12 1.7311459 -1.5646910 -1.5646910 -1.5646910 0.7378941 -1.5646910 row13 1.9745801 2.0597379 -1.8320824 0.3651422 -1.8320824 1.6336535 row14 -1.8481861 -1.8481861 -1.8481861 1.0962529 1.1963364 -1.8481861 row15 1.2264393 0.8697644 1.5629116 -1.7692929 1.4495829 2.0373696 row16 1.2374041 1.7907893 1.1464323 0.4998051 1.9305513 1.9085724 row17 -1.9171994 -1.9171994 1.5485365 0.4806958 1.2608544 -1.9171994 row18 -1.5315316 -1.5315316 -1.5315316 -0.8383844 -1.5315316 1.0334178 row19 2.1232229 -1.5143633 -0.4157510 1.7045126 2.1992088 2.2698264 row20 -1.4418538 -1.4418538 2.0845067 2.0546538 -1.4418538 2.4701692 col25 col26 col27 col28 col29 col30 row1 0.35682421 0.9321884 1.2041221 -1.840400 -1.8404004 1.5268955 row2 2.07827159 0.4132638 -1.5326463 -1.532646 -1.5326463 -1.5326463 row3 -1.34309209 -1.3430921 1.6526402 -1.343092 -1.3430921 -1.3430921 row4 -1.52911418 1.3040992 -1.5291142 1.904873 -1.5291142 -1.5291142 row5 -1.67179380 2.0894063 1.3727286 -1.671794 -1.6717938 2.2200265 row6 -1.50335050 -1.5033505 -1.5033505 -1.503351 -1.5033505 -1.5033505 row7 2.19302314 0.8067288 2.7728416 -1.139181 -1.1391814 2.4717365 row8 -1.60525962 2.1559405 1.8604763 -1.605260 -1.6052596 1.9782593 row9 1.83659918 0.3606927 1.3257736 1.892169 -1.7187489 1.3257736 row10 -1.16845682 2.4424611 -1.1684568 -1.168457 0.6233027 -1.1684568 row11 2.23370388 -1.6164437 1.3792885 -1.616444 -1.6164437 2.1447564 row12 0.04474692 1.5263515 1.9616695 -1.564691 -0.1783966 -1.5646910 row13 1.97458012 1.6942782 -1.8320824 1.058289 -1.8320824 1.2124401 row14 -1.84818605 2.0836396 -1.8481861 1.484018 2.0836396 1.7071620 row15 -1.76929293 0.7156137 1.6646943 -1.769293 1.1210788 2.1019081 row16 1.79078931 1.8631100 1.9305513 1.685429 1.5031072 1.4692057 row17 -1.91719944 -1.9171994 1.5485365 -1.917199 0.3853856 0.9160139 row18 1.93420435 0.4143786 1.6465223 1.301682 1.3016818 -1.5315316 row19 -1.51436326 -1.5143633 0.2773962 -1.514363 -1.5143633 -1.5143633 row20 2.31934631 -1.4418538 1.6491886 -1.441854 -1.4418538 -1.4418538 col31 col32 col33 col34 col35 col36 row1 -1.840400370 -1.8404004 1.6253355 -1.8404004 0.6445063 1.3376535 row2 -1.532646319 2.2959951 2.1309153 -1.5326463 -1.5326463 1.7254502 row3 -1.343092091 -1.3430921 -1.3430921 -1.3430921 -1.3430921 1.9891124 row4 -1.529114180 -1.5291142 2.3420868 -1.5291142 -1.5291142 1.7289824 row5 2.240229201 0.5254308 1.8545667 -1.6717938 -1.6717938 1.4192486 row6 0.981556147 2.2578496 1.8978469 -1.5033505 -1.5033505 2.0801684 row7 -1.139181370 -1.1391814 2.1930231 -1.1391814 2.4443376 -1.1391814 row8 0.004178293 -1.6052596 1.7620362 -0.2189653 1.9500884 2.2659414 row9 1.459304950 2.0189207 -1.7187489 1.5770880 -1.7187489 1.6485469 row10 0.623302652 2.7435662 -1.1684568 -1.1684568 -1.1684568 -1.1684568 row11 -1.616443726 1.8492922 -1.6164437 0.7814515 -1.6164437 -1.6164437 row12 -0.466078701 -1.5646910 2.0188279 1.9318166 -1.5646910 -1.5646910 row13 -1.832082365 -1.8320824 1.4637545 1.5352135 1.8314793 -0.0403229 row14 -1.848186054 0.4543990 0.6367206 1.3706898 -1.8481861 -1.8481861 row15 -1.769292927 -1.7692929 -1.7692929 1.6319045 0.4279317 -1.7692929 row16 -1.898090140 0.9351232 -1.8980901 0.1813514 -1.8980901 1.6854288 row17 -1.917199445 2.0146262 -1.9171994 -1.9171994 0.6477499 -1.9171994 row18 -1.531531553 1.5129909 -1.5315316 -1.5315316 1.9342043 2.1320301 row19 2.246836852 2.3357843 1.2582255 -1.5143633 -1.5143633 -1.5143633 row20 -1.441853810 1.7770220 -1.4418538 2.2217078 -1.4418538 -1.4418538 col37 col38 col39 col40 col41 col42 row1 0.4621847 1.84847908 1.04997139 -0.2309625 1.2041221 2.0914253 row2 -1.5326463 -1.53264632 2.37937669 -1.5326463 -1.5326463 2.2285538 row3 -1.3430921 -1.34309209 -1.34309209 2.1226438 -1.3430921 -1.3430921 row4 0.4167960 -1.52911418 1.56192827 1.8381817 -1.5291142 -1.5291142 row5 1.6604107 -1.67179380 -1.67179380 1.1007949 -1.6717938 0.5254308 row6 2.2578496 1.58769195 -1.50335050 -1.5033505 2.0801684 2.2578496 row7 -1.1391814 -1.13918137 2.38717916 -1.1391814 0.9402602 -1.1391814 row8 0.1864998 -1.60525962 -1.60525962 -1.6052596 1.9500884 -0.2189653 row9 0.9893013 0.58383621 1.74698702 1.3257736 -1.7187489 -1.7187489 row10 -1.1684568 -1.16845682 -1.16845682 -1.1684568 -1.1684568 -1.1684568 row11 2.2753766 1.15614500 -1.61644373 1.5616101 1.2739280 -1.6164437 row12 2.1488811 1.57080323 -1.56469099 -1.5646910 2.0188279 2.1241885 row13 -0.4457880 1.63365354 -0.44578800 1.9055873 -1.8320824 -1.8320824 row14 1.5858012 -1.84818605 -0.05642658 -1.8481861 1.7071620 0.9850273 row15 1.9195865 1.17514605 -1.76929293 -1.7692929 0.5332922 1.8682932 row16 1.4692057 -1.89809014 -1.89809014 1.7128278 1.3207857 -1.8980901 row17 1.9114420 1.63814862 1.41500507 1.9114420 1.8894630 -1.9171994 row18 -1.5315316 0.95337510 -1.53153155 -1.5315316 1.6465223 -1.5315316 row19 -1.5143633 0.09507465 2.01199726 -1.5143633 0.6828613 2.3774570 row20 1.1972035 -1.44185381 2.11349425 -1.4418538 -1.4418538 -1.4418538 col43 col44 col45 col46 col47 col48 row1 1.29509385 -1.8404004 -1.84040037 0.7986570 0.9321884 1.0499714 row2 -1.53264632 -1.5326463 0.54679522 -1.5326463 2.3175013 -0.4340340 row3 2.32046956 1.8349617 -1.34309209 -1.3430921 2.0908951 2.3204696 row4 1.87208320 1.9972463 1.30409916 1.9048730 -1.5291142 2.1344475 row5 1.91172513 2.2600318 2.06587581 -1.6717938 -1.6717938 -1.6717938 row6 2.23431912 1.6747033 -1.50335050 -1.5033505 -1.5033505 0.4425596 row7 -1.13918137 -1.1391814 1.85655090 -1.1391814 -1.1391814 -1.1391814 row8 2.26594139 1.6136162 0.34065053 1.0337977 -1.6052596 1.5302346 row9 0.84620048 -0.3324545 -0.10931097 1.7777587 -1.7187489 -1.7187489 row10 -1.16845682 -1.1684568 -1.16845682 -1.1684568 1.6041319 -1.1684568 row11 1.37928855 1.1561450 1.02261360 -0.5178314 -0.5178314 -1.6164437 row12 -1.56469099 -1.5646910 2.12418846 2.0988707 -1.5646910 -1.5646910 row13 1.72326570 -1.8320824 -0.44578800 0.4705027 0.1138278 -1.8320824 row14 1.70716201 1.6175498 1.61754985 1.2428564 -1.8481861 1.9804553 row15 1.84162499 0.7156137 -1.76929293 -1.7692929 1.7272146 -1.7692929 row16 -1.89809014 -1.8980901 -1.89809014 -1.8980901 -1.8980901 -1.8980901 row17 1.41500507 1.6381486 -1.91719944 1.3016764 1.6663195 -1.9171994 row18 -1.53153155 -1.5315316 0.07790636 -1.5315316 1.8357643 -1.5315316 row19 0.09507465 2.3568377 -1.51436326 1.6636906 -0.8212161 -1.5143633 row20 -1.44185381 1.9593436 -1.44185381 1.9921334 2.1416651 -1.4418538 col49 col50 row1 -1.8404004 1.9437893 row2 -1.5326463 -1.5326463 row3 -1.3430921 -1.3430921 row4 -0.8359670 2.3210334 row5 -1.6717938 0.4076477 row6 0.2884090 2.2102216 row7 1.4257680 -1.1391814 row8 -1.6052596 1.7620362 row9 1.8921690 -1.7187489 row10 1.2294385 1.0287678 row11 -1.6164437 -1.6164437 row12 -1.5646910 -1.5646910 row13 2.0391186 -1.8320824 row14 1.7353329 1.6175498 row15 1.6964430 0.3101486 row16 -1.8980901 0.9351232 row17 0.6477499 0.0287107 row18 1.7643053 -1.5315316 row19 -1.5143633 1.5766792 row20 2.1134943 -1.4418538 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 1.840400 1.532646 1.343092 1.529114 1.671794 1.503351 1.139181 1.605260 row9 row10 row11 row12 row13 row14 row15 row16 1.718749 1.168457 1.616444 1.564691 1.832082 1.848186 1.769293 1.898090 row17 row18 row19 row20 1.917199 1.531532 1.514363 1.441854 attr(,"parameters")$pseudocount [1] 1 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "clr" > # Expect error > class(try(vegan::decostand(testdata, method = "clr")))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > class(try(vegan::decostand(testdata, method = "clr", pseudocount=0)))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > > # Tests that clr robust gives values that are approximately same if only > # one value per sample are changed to zero > # Adds pseudocount > test <- testdata+1 > test2 <- test; test2[,1] <- 0 > > # clr robust transformations > test <- vegan::decostand(test, method = "rclr") > test2 <- vegan::decostand(test2, method = "rclr") > > # Removes first cols > test <- test[, -1] > test2 <- test2[, -1] > > # Expect high correlation > cor(unlist(test), unlist(test2)) > 0.99 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 col15 col16 col17 col18 col19 col20 col21 col22 col23 col24 col25 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 col27 col28 col29 col30 col31 col32 col33 col34 col35 col36 col37 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 col39 col40 col41 col42 col43 col44 col45 col46 col47 col48 col49 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 col2 FALSE col3 FALSE col4 FALSE col5 FALSE col6 FALSE col7 FALSE col8 FALSE col9 FALSE col10 FALSE col11 FALSE col12 FALSE col13 FALSE col14 FALSE col15 FALSE col16 FALSE col17 FALSE col18 FALSE col19 FALSE col20 FALSE col21 FALSE col22 FALSE col23 FALSE col24 FALSE col25 FALSE col26 FALSE col27 FALSE col28 FALSE col29 FALSE col30 FALSE col31 FALSE col32 FALSE col33 FALSE col34 FALSE col35 FALSE col36 FALSE col37 FALSE col38 FALSE col39 FALSE col40 FALSE col41 FALSE col42 FALSE col43 FALSE col44 FALSE col45 FALSE col46 FALSE col47 FALSE col48 FALSE col49 FALSE col50 TRUE > > ############################# NAMES #################################### > > # Tests that dimensins have correct names > all(rownames(vegan::decostand(testdata+1, method = "clr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "clr", pseudocount=1)) == colnames(testdata)) [1] TRUE > all(rownames(vegan::decostand(testdata, method = "rclr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "rclr")) == colnames(testdata)) [1] TRUE > > ######################################################################## > > # Count vs. Relative data > > # CLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "clr") > a2 <- vegan::decostand(relative.with.pseudo, method = "clr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # rCLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "rclr") > a2 <- vegan::decostand(relative.with.pseudo, method = "rclr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # ALR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "alr") > a2 <- vegan::decostand(relative.with.pseudo, method = "alr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] FALSE > > ####### # ALR transformation drops one feature ################ > ncol(vegan::decostand(testdata.with.pseudo, "alr")) == ncol(testdata.with.pseudo)-1 [1] FALSE > > > > > > > > proc.time() user system elapsed 1.34 0.34 1.65