R Under development (unstable) (2024-05-20 r86569 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > ############################### CLR #################################### > # Calculates clr-transformation. Should be equal. > > # Test data > # data(varespec) > testdata <- matrix(round(runif(1000, 0, 100)), nrow=20) > testdata <- testdata - 50 > testdata[testdata < 0] <- 0 > rownames(testdata) <- paste0("row", seq_len(nrow(testdata))) > colnames(testdata) <- paste0("col", seq_len(ncol(testdata))) > testdata.with.pseudo <- testdata + 1 > > # Calculates relative abundance table > relative <- vegan::decostand(testdata, "total") > relative.with.pseudo <- vegan::decostand(testdata+1, "total") > > # CLR data > x.clr <- vegan::decostand(testdata+1, method = "clr") > x.rclr <- vegan::decostand(testdata, method = "rclr") > x.clr.pseudo <- vegan::decostand(testdata, method = "clr", pseudocount=1) > > max(abs(x.clr - x.clr.pseudo))<1e-6 [1] TRUE > max(abs(vegan::decostand(testdata+1, method = "clr", pseudocount=0)-x.clr.pseudo))<1e-6 [1] TRUE > > # Tests clr > alt.clr <- t(apply(as.matrix(relative.with.pseudo), 1, FUN=function(x){ + log(x) - mean(log(x))})) > max(abs(x.clr-alt.clr)) < 1e-6 [1] TRUE > all((x.rclr==0) == (testdata==0)) [1] TRUE > > # Expect that error does not occur > vegan::decostand(testdata, method = "rclr") col1 col2 col3 col4 col5 col6 row1 0.00000000 -0.55071474 0.00000000 -0.99254749 0.1775238 0.00000000 row2 0.37956166 0.14115063 -0.22657415 0.00000000 0.1788910 0.00000000 row3 0.00000000 -1.08167208 0.00000000 -1.59249770 0.0000000 0.01694021 row4 -0.06992714 0.00000000 0.00000000 -0.76307432 0.6456929 0.00000000 row5 0.64488768 0.83725957 0.73189905 0.00000000 0.8860497 0.58236732 row6 -2.59278195 0.00000000 0.00000000 0.93357857 0.8729540 0.00000000 row7 0.84767275 -0.04841528 -0.64625228 0.64473190 0.0000000 0.00000000 row8 0.75467743 0.00000000 0.00000000 0.00000000 -0.6316169 0.00000000 row9 0.00000000 0.00000000 0.00000000 -0.25182064 0.0000000 -0.46312974 row10 -0.60818844 0.08495875 0.00000000 0.05510578 0.1961844 0.47062123 row11 0.00000000 1.06159490 0.00000000 0.00000000 0.0000000 0.00000000 row12 -0.25218421 0.65068350 0.08428802 0.00000000 0.8899132 0.00000000 row13 0.39113705 0.22408296 0.00000000 -0.92104934 0.4652450 0.68838857 row14 0.00000000 -1.19915765 0.00000000 -0.68833202 0.0000000 0.81574537 row15 0.96728565 0.58591809 0.00000000 0.91727523 0.0000000 1.01491370 row16 -1.81036942 0.89768078 -1.52268735 -0.20093151 0.9196597 -0.82954017 row17 0.00000000 1.34019300 0.00000000 0.00000000 0.0000000 -0.60571715 row18 0.00000000 0.14293440 0.00000000 0.00000000 0.0000000 0.02515136 row19 0.00000000 0.29131519 -0.11414992 0.87446147 0.0000000 0.00000000 row20 0.00000000 -0.17042462 0.00000000 1.01915945 -0.8635718 0.00000000 col7 col8 col9 col10 col11 col12 row1 0.0000000 0.1424324 0.2759638 0.21142531 0.06832447 0.00000000 row2 0.0000000 0.0000000 0.3795617 0.49397201 0.00000000 0.00000000 row3 0.3999325 0.0000000 0.7100874 1.18009102 0.00000000 -1.30481563 row4 0.0000000 0.0000000 0.5767000 0.00000000 0.00000000 -0.52191226 row5 0.1929026 0.0000000 -1.4653255 -0.07903116 0.75929803 0.00000000 row6 0.0000000 0.0000000 0.0000000 0.29758981 0.00000000 0.00000000 row7 0.0000000 0.0000000 0.0000000 -0.27155883 0.00000000 -1.65785319 row8 0.0000000 0.0000000 0.3238945 0.46699536 0.53153388 0.00000000 row9 0.0000000 0.1376441 0.1048543 0.03586143 0.00000000 0.03586143 row10 0.0000000 0.0000000 0.1695161 0.40874582 0.00000000 -0.73335158 row11 0.0000000 1.1692256 0.0000000 0.32192770 0.00000000 1.03860538 row12 0.0000000 -1.8616221 0.0000000 0.00000000 -0.18764569 -0.18764569 row13 0.0000000 -0.5643744 0.0000000 0.74395842 0.98318811 0.00000000 row14 0.0000000 0.0000000 0.0000000 0.00000000 -1.04500697 0.00000000 row15 0.0000000 -0.1813371 0.0000000 0.43176741 0.00000000 0.54955045 row16 0.0000000 0.0000000 0.0000000 0.00000000 -0.13639299 0.96221930 row17 0.0000000 0.0000000 -0.9421894 0.00000000 -0.24904221 0.00000000 row18 -0.2084635 0.0000000 0.7591205 0.48468369 0.00000000 -0.44485227 row19 0.0000000 -0.4018320 1.0050817 0.00000000 0.05770034 -2.88673864 row20 0.0000000 0.0000000 0.0000000 0.36857188 0.00000000 0.40939388 col13 col14 col15 col16 col17 col18 row1 -1.39801260 0.0000000 0.63886933 0.00000000 0.00000000 0.00000000 row2 -0.02590345 0.0000000 0.21525861 0.00000000 0.00000000 -0.02590345 row3 0.00000000 0.0000000 0.91980792 0.00000000 1.11555250 1.04655963 row4 0.00000000 -1.3692101 0.00000000 0.00000000 0.66767181 0.68917801 row5 0.00000000 0.8372596 0.00000000 0.00000000 -0.65439531 -0.14356968 row6 0.96256611 0.0000000 0.00000000 0.17980677 0.00000000 -1.49416966 row7 0.00000000 0.0000000 -0.40509022 -0.09970857 0.00000000 0.00000000 row8 0.00000000 -0.5363067 0.72935963 0.00000000 -0.98829187 0.00000000 row9 0.55380452 0.0000000 0.23001744 0.00000000 0.00000000 -0.07746726 row10 0.00000000 -0.1833052 0.00000000 -0.95649513 -0.14556491 0.00000000 row11 -1.62398245 -2.7225947 -2.02944756 0.00000000 0.49628109 0.86092420 row12 -0.25218421 0.2178194 0.13080804 0.95178859 0.77743520 0.00000000 row13 0.31109434 0.0000000 0.87071013 0.00000000 -1.48066513 -1.07520002 row14 0.00000000 -0.4259678 -0.21832839 0.00000000 0.53544341 0.00000000 row15 0.00000000 -0.4437013 0.00000000 -2.05313924 0.00000000 0.00000000 row16 0.00000000 0.0000000 -1.81036942 0.00000000 -0.26992438 0.26907212 row17 0.00000000 0.0000000 1.05929061 1.11193434 -0.06672065 -1.45301501 row18 0.00000000 0.2143934 0.65376002 0.40244559 0.65376002 0.00000000 row19 0.00000000 0.0000000 0.05770034 0.00000000 0.00000000 0.48055719 row20 -0.24453259 -2.8094819 0.00000000 0.44861459 0.00000000 0.00000000 col19 col20 col21 col22 col23 col24 row1 0.00000000 0.0000000 0.00000000 0.59441757 0.4211458 0.0000000 row2 0.77487439 0.4939720 -0.55199655 0.00000000 -1.0375044 0.0000000 row3 0.01694021 0.0000000 -0.89935052 -0.05205266 0.8053976 0.0000000 row4 0.52790986 0.0000000 -0.27059783 0.00000000 -0.2705978 -1.3692101 row5 0.00000000 -1.4653255 0.00000000 0.73189905 0.8372596 0.0000000 row6 0.00000000 0.0000000 -0.98334404 0.00000000 0.0000000 -1.4941697 row7 0.00000000 -0.2715588 0.66942452 0.00000000 0.0000000 0.3570498 row8 0.00000000 0.2438518 0.00000000 0.00000000 0.7793700 0.0000000 row9 0.39253637 0.4648570 0.57485793 -0.81143643 0.0000000 0.1376441 row10 0.00000000 0.0000000 -0.07410595 -0.73335158 0.3872396 0.0000000 row11 0.00000000 1.1692256 -0.64315320 -0.42000964 0.0000000 0.0000000 row12 -1.16847495 0.0000000 0.00000000 0.00000000 0.0000000 -0.5623391 row13 -1.76834720 0.8942406 0.00000000 0.00000000 0.0000000 0.7165594 row14 0.00000000 0.0000000 0.41028027 -0.42596776 0.0000000 -2.2977699 row15 0.02630230 0.0000000 0.00000000 1.06037607 0.0000000 0.0000000 row16 0.00000000 0.0000000 0.82868791 0.55675419 0.0000000 0.0000000 row17 0.00000000 -1.1653329 0.78057721 0.00000000 0.4441050 0.0000000 row18 0.69724513 0.0000000 -0.85031738 0.00000000 0.0000000 0.0000000 row19 0.00000000 0.0000000 -1.09497917 0.00000000 0.0000000 0.5789973 row20 0.00000000 0.0000000 0.00000000 0.02373140 0.0000000 0.0000000 col25 col26 col27 col28 col29 col30 row1 0.3365885 0.2442151 0.42114585 -0.7918768 0.0000000 0.0000000 row2 0.4094146 -0.5519965 0.00000000 0.4094146 0.7748744 0.0000000 row3 -1.0816721 0.0000000 -0.05205266 0.0000000 0.0000000 0.0000000 row4 0.1348673 0.0000000 0.00000000 0.2730176 0.3653909 0.0000000 row5 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 row6 0.0000000 0.0000000 0.00000000 0.0000000 0.3516570 0.0000000 row7 0.4215884 0.5667704 -0.40509022 0.0000000 0.0000000 -0.6462523 row8 0.9369990 0.0000000 0.43309381 0.9778210 0.0000000 0.1103204 row9 0.0000000 0.0000000 -0.30061081 0.0000000 0.0000000 0.0000000 row10 0.3872396 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 row11 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 row12 0.0000000 0.5661261 0.00000000 0.0000000 0.0000000 -2.9602344 row13 0.0000000 0.5003363 0.00000000 0.0000000 0.0000000 0.0000000 row14 0.0000000 0.2279587 0.53544341 0.5644309 0.4102803 0.6979623 row15 -2.0531392 -0.5490618 0.00000000 0.0000000 0.9172752 0.0000000 row16 0.0000000 0.0000000 -0.13639299 -1.1172222 0.9828386 0.8752079 row17 1.0592906 0.0000000 0.00000000 0.0000000 1.0318916 0.0000000 row18 0.0000000 0.6312872 0.00000000 -2.0542902 -0.1571702 -0.3803137 row19 0.1089936 0.0000000 0.51445874 0.3713579 0.0000000 0.8021408 row20 1.0406657 0.4863549 -0.03689323 -0.1704246 0.7458661 0.0000000 col31 col32 col33 col34 col35 col36 row1 0.27596384 -0.05427785 0.0000000 0.0000000 0.00000000 0.0000000 row2 0.00000000 0.64425421 0.0000000 -1.0375044 0.00000000 0.0000000 row3 1.13753140 0.00000000 -1.3048156 1.1375314 0.00000000 1.0930796 row4 0.05790623 -2.46782241 0.6232200 0.0000000 0.00000000 0.7308507 row5 -1.75300760 0.00000000 0.0000000 0.8119418 0.03875187 0.0000000 row6 0.00000000 0.96256611 0.0000000 0.0000000 0.00000000 0.0000000 row7 0.00000000 0.00000000 0.1339063 0.3570498 0.00000000 0.0000000 row8 -0.16161330 0.00000000 0.0000000 0.2438518 -0.36925266 0.0000000 row9 0.00000000 0.53229831 0.4172290 -1.3504329 0.00000000 0.3672186 row10 -0.22252595 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 row11 0.00000000 -2.72259474 0.0000000 1.1486063 0.00000000 -0.3246995 row12 0.37197009 0.00000000 0.0000000 0.5951136 -0.18764569 0.4737528 row13 0.00000000 0.00000000 -1.7683472 0.0000000 0.89424062 0.8707101 row14 0.00000000 0.41028027 -0.9114756 0.3763787 0.00000000 0.0000000 row15 0.00000000 0.00000000 0.8912997 -2.7462864 0.89129974 0.3892078 row16 0.00000000 0.00000000 -1.5226874 0.7286044 0.00000000 0.0000000 row17 0.00000000 0.01332206 1.2325623 0.9141086 -1.45301501 -2.5516273 row18 -0.06186002 -0.15717020 0.0000000 0.3128334 0.00000000 -0.1571702 row19 0.00000000 0.80214081 0.1089936 0.9844624 0.00000000 0.0000000 row20 0.00000000 -1.71086966 0.0000000 0.0000000 0.00000000 0.0000000 col37 col38 col39 col40 col41 col42 row1 0.0000000 0.00000000 0.00000000 -0.01171824 0.68142894 0.21142531 row2 0.0000000 0.64425421 0.00000000 0.00000000 0.00000000 -3.11694590 row3 0.9198079 0.08147873 0.00000000 0.67618584 -2.69110999 0.00000000 row4 0.2402278 0.60023052 0.39437847 0.00000000 -1.36921012 0.33553797 row5 0.5156759 0.00000000 -1.05986042 0.00000000 0.00000000 -2.85161989 row6 1.1207901 1.16841816 0.00000000 0.00000000 0.00000000 0.70305491 row7 0.0000000 -0.84692297 -0.33609735 0.00000000 -0.09970857 0.09134667 row8 0.4997852 0.00000000 -2.24105484 -2.93420202 0.43309381 0.59215850 row9 0.0000000 -0.52375436 0.36721856 0.07095275 -1.68690517 0.46485703 row10 0.0000000 0.00000000 0.00000000 0.42979923 0.00000000 0.00000000 row11 0.0000000 0.00000000 0.00000000 0.00000000 1.12755286 0.04999398 row12 0.6232845 0.00000000 0.00000000 0.13080804 0.00000000 0.00000000 row13 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 row14 0.9211059 -0.68833202 0.00000000 0.00000000 0.00000000 0.00000000 row15 0.0000000 -0.66684488 0.00000000 0.47258941 -0.03823622 0.00000000 row16 0.0000000 0.00000000 -0.07576837 0.22651250 0.00000000 0.89768078 row17 0.0000000 0.00000000 0.00000000 0.00000000 -0.15373203 -2.55162730 row18 0.2810847 0.21439336 0.00000000 0.56066960 0.58476715 0.00000000 row19 0.0000000 0.85093098 0.00000000 0.00000000 -2.19359146 0.00000000 row20 0.0000000 -0.24453259 0.90409012 0.00000000 0.00000000 0.00000000 col43 col44 col45 col46 col47 col48 row1 0.00000000 0.0000000 0.6814289 0.5478976 -0.88718697 0.00000000 row2 -0.71905063 0.0000000 0.0000000 0.0000000 0.00000000 0.62072371 row3 0.74287721 0.0000000 0.1421034 0.3046223 0.00000000 -1.99796281 row4 0.00000000 0.0000000 0.0000000 0.7102314 0.57670003 0.01708424 row5 0.00000000 0.7859663 -0.4537246 0.5495775 0.00000000 -0.36671324 row6 0.00000000 -0.9833440 0.0000000 0.5852719 -0.19488668 0.00000000 row7 0.48221298 0.0000000 0.7400421 0.8270535 0.00000000 -1.09823740 row8 0.77937005 0.7293596 0.1103204 -1.1424426 0.00000000 -1.32476411 row9 -0.58829288 0.3412431 0.5103194 0.0000000 0.00000000 0.00000000 row10 0.02433412 0.0000000 0.1139463 0.0000000 0.22215987 0.00000000 row11 0.00000000 1.1275529 0.0000000 0.9149914 0.00000000 0.00000000 row12 0.00000000 0.0000000 0.6506835 0.0000000 0.50550149 0.00000000 row13 -2.86695949 0.0000000 0.5342379 0.4288774 0.65940103 0.00000000 row14 0.00000000 0.0000000 0.6466690 0.7226550 0.30491975 0.05360532 row15 0.00000000 -0.2613798 -1.1368485 0.0000000 0.00000000 1.01491370 row16 0.00000000 0.0000000 0.2690721 0.0000000 0.03545727 0.98283859 row17 0.22096142 0.6264265 -1.8584801 1.0592906 0.28158604 1.05929061 row18 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.31283343 row19 0.66860942 -0.1141499 0.0000000 0.1089936 0.00000000 1.02528436 row20 0.00000000 0.0000000 0.0000000 0.0000000 0.97470769 0.00000000 col49 col50 row1 -1.2438619180 0.00000000 row2 0.7332016978 0.00000000 row3 0.0000000000 -0.38852490 row4 0.0000000000 0.30476631 row5 0.5495774957 0.00000000 row6 -0.3955573749 0.00000000 row7 0.0003748881 0.69352207 row8 0.5921585040 0.06153025 row9 0.0000000000 0.31457483 row10 0.3197983363 0.38723962 row11 0.0000000000 0.00000000 row12 0.0000000000 0.00000000 row13 0.2685347250 0.00000000 row14 0.2671794224 0.00000000 row15 0.0000000000 0.00000000 row16 0.0000000000 0.00000000 row17 0.8156685287 0.00000000 row18 -2.4597552899 0.00000000 row19 0.0000000000 -2.88673864 row20 0.0000000000 -0.17042462 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 3.189772 3.116946 2.691110 3.160970 2.851620 2.592782 3.044148 2.934202 row9 row10 row11 row12 row13 row14 row15 row16 3.296343 3.441402 2.722595 2.960234 2.866959 2.990917 2.746286 2.908982 row17 row18 row19 row20 2.551627 3.152902 2.886739 2.809482 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "rclr" > vegan::decostand(testdata, method = "clr", pseudocount=1) col1 col2 col3 col4 col5 col6 row1 -1.5547789 1.1532713 -1.5547789 0.7478062 1.8464185 -1.5547789 row2 1.9958646 1.7653409 1.4139430 -1.5304960 1.8017085 -1.5304960 row3 -1.6256041 0.1661553 -1.6256041 -0.2393098 -1.6256041 1.1469846 row4 1.3313949 -1.8040993 -1.8040993 0.6808074 2.0245421 -1.8040993 row5 1.9941005 2.1813121 2.0786579 -1.5322600 2.2289401 1.9334759 row6 -0.2848921 -0.9780393 -0.9780393 2.5773088 2.5184683 -0.9780393 row7 2.2376087 1.3701081 0.8104923 2.0391577 -1.6744143 -1.6744143 row8 1.9610965 -1.7524755 -1.7524755 -1.7524755 0.6454197 -1.7524755 row9 -1.8704584 -1.8704584 -1.8704584 1.2205841 -1.8704584 1.0199134 row10 1.3609902 2.0259665 -1.5293815 1.9969790 2.1341801 2.4024441 row11 -1.0891436 2.7175189 -1.0891436 -1.0891436 -1.0891436 -1.0891436 row12 1.3114946 2.1764920 1.6299483 -1.4610941 2.4101069 -1.4610941 row13 1.8716225 1.7112799 -1.4242144 0.6552272 1.9430815 2.1593046 row14 -1.5295626 0.4163475 -1.5295626 0.8683326 -1.5295626 2.2990788 row15 2.3659947 1.9956210 -1.3716749 2.3172046 -1.3716749 2.4125148 row16 -0.1084017 2.3339453 0.1147419 1.2778927 2.3554515 0.7025285 row17 -1.4529151 2.4591079 -1.4529151 -1.4529151 -1.4529151 0.6265265 row18 -1.6715709 1.6606336 -1.6715709 -1.6715709 -1.6715709 1.5473049 row19 -1.4985070 1.7203688 1.3347063 2.2856826 -1.4985070 -1.4985070 row20 -1.1047789 1.6032713 -1.1047789 2.7453687 0.9746626 -1.1047789 col7 col8 col9 col10 col11 col12 row1 -1.5547789 1.81251692 1.94172866 1.879208 1.7410580 -1.55477891 row2 -1.5304960 -1.53049596 1.99586456 2.107090 -1.5304960 -1.53049596 row3 1.5098901 -1.62560413 1.80838308 2.266216 -1.6256041 -0.01616622 row4 -1.8040993 -1.80409929 1.95710082 -1.804099 -1.8040993 0.90395091 row5 1.5587825 -1.53225999 0.07717792 1.300953 2.1053262 -1.53225999 row6 -0.9780393 -0.97803929 -0.97803929 1.966400 -0.9780393 -0.97803929 row7 -1.6744143 -1.67441433 -1.67441433 1.158799 -1.6744143 -0.06497642 row8 -1.7524755 -1.75247554 1.54336133 1.681512 1.7440320 -1.75247554 row9 -1.8704584 1.59527751 1.56352881 1.496837 -1.8704584 1.49683744 row10 -1.5293815 -1.52938151 2.10820465 2.341819 -1.5293815 1.24320721 row11 -1.0891436 2.82287941 -1.08914360 2.001899 -1.0891436 2.69504604 row12 -1.4610941 -0.07479976 -1.46109412 -1.461094 1.3721192 1.37211923 row13 -1.4242144 0.97368091 -1.42421436 2.213372 2.4469867 -1.42421436 row14 -1.5295626 -1.52956264 -1.52956264 -1.529563 0.5498789 -1.52956264 row15 -1.3716749 1.26738245 -1.37167488 1.847201 -1.3716749 1.96052963 row16 -1.4946961 -1.49469606 -1.49469606 -1.494696 1.3385173 2.39712424 row17 -1.4529151 -1.45291509 0.33884438 -1.452915 0.9449802 -1.45291509 row18 1.3241614 -1.67157092 2.26025471 1.991991 -1.6715709 1.10101780 row19 -1.4985070 1.06644233 2.41351598 -1.498507 1.4972252 -0.80535985 row20 -1.1047789 -1.10477894 -1.10477894 2.114097 -1.1047789 2.15331760 col13 col14 col15 col16 col17 col18 row1 0.3911312 -1.5547789 2.295368697 -1.5547789 -1.5547789 -1.55477891 row2 1.6049983 -1.5304960 1.836799867 -1.5304960 -1.5304960 1.60499825 row3 -1.6256041 -1.6256041 2.011982031 -1.6256041 2.2030373 2.13559599 row4 -1.8040993 0.1418109 -1.804099291 -1.8040993 2.0460483 2.06710172 row5 -1.5322600 2.1813121 -1.532259995 -1.5322600 0.7703251 1.24032873 row6 2.6054797 -0.9780393 -0.978039285 1.8551741 -0.9780393 0.40825508 row7 -1.6744143 -1.6744143 1.033635870 1.3213179 -1.6744143 -1.67441433 row8 -1.7524755 0.7324311 1.936403918 -1.7524755 0.3269660 -1.75247554 row9 2.0007426 -1.8704584 1.684889667 -1.8704584 -1.8704584 1.38763814 row10 -1.5293815 1.7664554 -1.529381512 1.0355678 1.8028230 -1.52938151 row11 0.2971508 -0.3959964 0.009468691 -1.0891436 2.1689529 2.52177432 row12 1.3114946 1.7577817 1.674400100 2.4707315 2.3001060 -1.46109412 row13 1.7946615 -1.4242144 2.336985755 -1.4242144 0.1852236 0.52169579 row14 -1.5295626 1.1094947 1.303650706 -1.5295626 2.0257854 -1.52956264 row15 -1.3716749 1.0262204 -1.371674879 -0.2730626 -1.3716749 -1.37167488 row16 -1.4946961 -1.4946961 -0.108401697 -1.4946961 1.2133541 1.72417977 row17 -1.4529151 -1.4529151 2.184671069 2.2359644 1.1120343 -0.06662073 row18 -1.6715709 1.7296265 2.157070473 1.9119480 2.1570705 -1.67157092 row19 -1.4985070 -1.4985070 1.497225248 -1.4985070 -1.4985070 1.90269036 row20 1.5342784 -0.4116318 -1.104778937 2.1910579 -1.1047789 -1.10477894 col19 col20 col21 col22 col23 col24 row1 -1.5547789 -1.55477891 -1.5547789 2.2518836 2.0828073 -1.5547789 row2 2.3815270 2.10709020 1.1085614 -1.5304960 0.6667286 -1.5304960 row3 1.1469846 -1.62560413 0.3203060 1.0824461 1.9007564 -1.6256041 row4 1.9094728 -1.80409929 1.1403397 -1.8040993 1.1403397 0.1418109 row5 -1.5322600 0.07717792 -1.5322600 2.0786579 2.1813121 -1.5322600 row6 -0.9780393 -0.97803929 0.8137202 -0.9780393 -0.9780393 0.4082551 row7 -1.6744143 1.15879901 2.0632553 -1.6744143 -1.6744143 1.7595729 row8 -1.7524755 1.46640029 -1.7524755 -1.7524755 1.9851941 -1.7524755 row9 1.8431137 1.91373124 2.0213619 0.6944910 -1.8704584 1.5952775 row10 -1.5293815 -1.52938151 1.8718159 1.2432072 2.3207661 -1.5293815 row11 -1.0891436 2.82287941 1.1080810 1.3087517 -1.0891436 -1.0891436 row12 0.4848160 -1.46109412 -1.4610941 -1.4610941 -1.4610941 1.0238125 row13 -0.0379200 2.35997527 -1.4242144 -1.4242144 -1.4242144 2.1867036 row14 -1.5295626 -1.52956264 1.9044246 1.1094947 -1.5295626 -0.4309503 row15 1.4615385 -1.37167488 -1.3716749 2.4569665 -1.3716749 -1.3716749 row16 -1.4946961 -1.49469606 2.2665041 2.0018115 -1.4946961 -1.4946961 row17 -1.4529151 0.15652282 1.9143807 -1.4529151 1.5916073 -1.4529151 row18 2.1996301 -1.67157092 0.7263243 -1.6715709 -1.6715709 -1.6715709 row19 -1.4985070 -1.49850703 0.4474031 -1.4985070 -1.4985070 1.9980005 row20 -1.1047789 -1.10477894 -1.1047789 1.7855928 -1.1047789 -1.1047789 col25 col26 col27 col28 col29 col30 row1 2.0005692 1.9109570 2.0828073 0.9301277 -1.554779 -1.5547789 row2 2.0248521 1.1085614 -1.5304960 2.0248521 2.381527 -1.5304960 row3 0.1661553 -1.6256041 1.0824461 -1.6256041 -1.625604 -1.6256041 row4 1.5281052 -1.8040993 -1.8040993 1.6616366 1.751249 -1.8040993 row5 -1.5322600 -1.5322600 -1.5322600 -1.5322600 -1.532260 -1.5322600 row6 -0.9780393 -0.9780393 -0.9780393 -0.9780393 2.017693 -0.9780393 row7 1.8220932 1.9631718 1.0336359 -1.6744143 -1.674414 0.8104923 row8 2.1393448 -1.7524755 1.6487218 2.1793501 -1.752476 1.3385669 row9 -1.8704584 -1.8704584 1.1740640 -1.8704584 -1.870458 -1.8704584 row10 2.3207661 -1.5293815 -1.5293815 -1.5293815 -1.529382 -1.5293815 row11 -1.0891436 -1.0891436 -1.0891436 -1.0891436 -1.089144 -1.0891436 row12 -1.4610941 2.0942539 -1.4610941 -1.4610941 -1.461094 -0.7679469 row13 -1.4242144 1.9769830 -1.4242144 -1.4242144 -1.424214 -1.4242144 row14 -1.5295626 1.7285339 2.0257854 2.0539563 1.904425 2.1840094 row15 -0.2730626 0.9309102 -1.3716749 -1.3716749 2.317205 -1.3716749 row16 -1.4946961 -1.4946961 1.3385173 0.4512141 2.417327 2.3119664 row17 2.1846711 -1.4529151 -1.4529151 -1.4529151 2.158003 -1.4529151 row18 -1.6715709 2.1350916 -1.6715709 -0.2852766 1.372952 1.1616424 row19 1.5460154 -1.4985070 1.9354802 1.7973298 -1.498507 2.2150650 row20 2.7664221 2.2274256 1.7284344 1.6032713 2.478740 -1.1047789 col31 col32 col33 col34 col35 col36 row1 1.9417287 1.6232749 -1.55477891 -1.5547789 -1.55477891 -1.5547789 row2 -1.5304960 2.2536937 -1.53049596 0.6667286 -1.53049596 -1.5304960 row3 2.2245435 -1.6256041 -0.01616622 2.2245435 -1.62560413 2.1810584 row4 1.4539972 -0.7054870 2.00256320 -1.8040993 -1.80409929 2.1079237 row5 -0.1459656 -1.5322600 -1.53225999 2.1566195 1.41217898 -1.5322600 row6 -0.9780393 2.6054797 -0.97803929 -0.9780393 -0.97803929 -0.9780393 row7 -1.6744143 -1.6744143 1.54446149 1.7595729 -1.67441433 -1.6744143 row8 1.0807378 -1.7524755 -1.75247554 1.4664003 0.88658179 -1.7524755 row9 -1.8704584 1.9796892 1.86721122 0.2089831 -1.87045839 1.8184211 row10 1.7287150 -1.5293815 -1.52938151 -1.5293815 -1.52938151 -1.5293815 row11 -1.0891436 -0.3959964 -1.08914360 2.8026767 -1.08914360 1.3957631 row12 1.9062017 -1.4610941 -1.46109412 2.1224248 1.37211923 2.0046418 row13 -1.4242144 -1.4242144 -0.03792000 -1.4242144 2.35997527 2.3369858 row14 -1.5295626 1.9044246 0.66766194 1.8716347 -1.52956264 -1.5295626 row15 -1.3716749 -1.3716749 2.29188677 -0.6785277 2.29188677 1.8063790 row16 -1.4946961 -1.4946961 0.11474185 2.1688656 -1.49469606 -1.4946961 row17 -1.4529151 1.1861422 2.35374740 2.0435925 -0.06662073 -0.7597679 row18 1.4639233 1.3729515 -1.67157092 1.8249366 -1.67157092 1.3729515 row19 -1.4985070 2.2150650 1.54601541 2.3933133 -1.49850703 -1.4985070 row20 -1.1047789 0.2815154 -1.10477894 -1.1047789 -1.10477894 -1.1047789 col37 col38 col39 col40 col41 col42 row1 -1.554779 -1.5547789 -1.5547789 1.6640969 2.33704139 1.8792083 row2 -1.530496 2.2536937 -1.5304960 -1.5304960 -1.53049596 -0.8373488 row3 2.011982 1.2076092 -1.6256041 1.7755933 -0.93245695 -1.6256041 row4 1.629888 1.9800903 1.7794196 -1.8040993 0.14181086 1.7222612 row5 1.868937 -1.5322600 0.4136502 -1.5322600 -1.53225999 -0.8391128 row6 2.759630 2.8061503 -0.9780393 -0.9780393 -0.97803929 2.3541652 row7 -1.674414 0.6281708 1.0981744 -1.6744143 1.32131794 1.5036395 row8 1.713260 -1.7524755 -0.6538632 -1.0593284 1.64872185 1.8028725 row9 -1.870458 0.9627549 1.8184211 1.5307390 -0.07869892 1.9137312 row10 -1.529382 -1.5293815 -1.5293815 2.3624388 -1.52938151 -1.5293815 row11 -1.089144 -1.0891436 -1.0891436 -1.0891436 2.78205741 1.7440697 row12 2.149824 -1.4610941 -1.4610941 1.6744001 -1.46109412 -1.4610941 row13 -1.424214 -1.4242144 -1.4242144 -1.4242144 -1.42421436 -1.4242144 row14 2.402263 0.8683326 -1.5295626 -1.5295626 -1.52956264 -1.5295626 row15 -1.371675 0.8255497 -1.3716749 1.8864217 1.40091384 -1.3716749 row16 -1.494696 -1.4946961 1.3956757 1.6833578 -1.49469606 2.3339453 row17 -1.452915 -1.4529151 -1.4529151 -1.4529151 1.03199156 -0.7597679 row18 1.794165 1.7296265 -1.6715709 2.0660987 2.08962919 -1.6715709 row19 -1.498507 2.2626931 -1.4985070 -1.4985070 -0.39989474 -1.4985070 row20 -1.104779 1.5342784 2.6328907 -1.1047789 -1.10477894 -1.1047789 col43 col44 col45 col46 col47 col48 row1 -1.5547789 -1.5547789 2.3370414 2.2064212 0.8431164 -1.55477891 row2 0.9544107 -1.5304960 -1.5304960 -1.5304960 -1.5304960 2.23070415 row3 1.8401318 -1.6256041 1.2647676 1.4189183 -1.6256041 -0.52699184 row4 -1.8040993 -1.8040993 -1.8040993 2.0877210 1.9571008 1.41477653 row5 -1.5322600 2.1313017 0.9526467 1.9017272 -1.5322600 1.03268936 row6 -0.9780393 0.8137202 -0.9780393 2.2408365 1.5068674 -0.97803929 row7 1.8809337 -1.6744143 2.1322482 2.2174060 -1.6744143 0.40502721 row8 1.9851941 1.9364039 1.3385669 0.1934346 -1.7524755 0.03928393 row9 0.9021303 1.7931033 1.9581830 -1.8704584 -1.8704584 -1.87045839 row10 1.9671260 -1.5293815 2.0541374 -1.5293815 2.1594979 -1.52938151 row11 -1.0891436 2.7820574 -1.0891436 2.5744180 -1.0891436 -1.08914360 row12 -1.4610941 -1.4610941 2.1764920 -1.4610941 2.0354134 -1.46109412 row13 -0.7310672 -1.4242144 2.0097728 1.9079901 2.1311337 -1.42421436 row14 -1.5295626 -1.5295626 2.1339990 2.2081070 1.8026419 1.56147982 row15 -1.3716749 1.1932745 0.4200846 -1.3716749 -1.3716749 2.41251476 row16 -1.4946961 -1.4946961 1.7241798 -1.4946961 1.5010362 2.41732695 row17 1.3802983 1.7659607 -0.3543028 2.1846711 1.4374567 2.18467107 row18 -1.6715709 -1.6715709 -1.6715709 -1.6715709 -1.6715709 1.82493664 row19 2.0850119 1.3347063 -1.4985070 1.5460154 -1.4985070 2.43331861 row20 -1.1047789 -1.1047789 -1.1047789 -1.1047789 2.7018836 -1.10477894 col49 col50 row1 0.5246626 -1.5547789 row2 2.3407050 -1.5304960 row3 -1.6256041 0.7722911 row4 -1.8040993 1.6924083 row5 1.9017272 -1.5322600 row6 1.3245458 -0.9780393 row7 1.4166281 2.0867858 row8 1.8028725 1.2920469 row9 -1.8704584 1.7671278 row10 2.2548081 2.3207661 row11 -1.0891436 -1.0891436 row12 -1.4610941 -1.4610941 row13 1.7538395 -1.4242144 row14 1.7662742 -1.5295626 row15 -1.3716749 -1.3716749 row16 -1.4946961 -1.4946961 row17 1.9482823 -1.4529151 row18 -0.5729586 -1.6715709 row19 -1.4985070 -0.8053598 row20 -1.1047789 1.6032713 attr(,"parameters") attr(,"parameters")$means row1 row2 row3 row4 row5 row6 row7 row8 1.5547789 1.5304960 1.6256041 1.8040993 1.5322600 0.9780393 1.6744143 1.7524755 row9 row10 row11 row12 row13 row14 row15 row16 1.8704584 1.5293815 1.0891436 1.4610941 1.4242144 1.5295626 1.3716749 1.4946961 row17 row18 row19 row20 1.4529151 1.6715709 1.4985070 1.1047789 attr(,"parameters")$pseudocount [1] 1 attr(,"parameters")$margin [1] 1 attr(,"decostand") [1] "clr" > # Expect error > class(try(vegan::decostand(testdata, method = "clr")))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > class(try(vegan::decostand(testdata, method = "clr", pseudocount=0)))=="try-error" Error : 'clr' cannot be used with non-positive data: use pseudocount > 0 [1] TRUE > > # Tests that clr robust gives values that are approximately same if only > # one value per sample are changed to zero > # Adds pseudocount > test <- testdata+1 > test2 <- test; test2[,1] <- 0 > > # clr robust transformations > test <- vegan::decostand(test, method = "rclr") > test2 <- vegan::decostand(test2, method = "rclr") > > # Removes first cols > test <- test[, -1] > test2 <- test2[, -1] > > # Expect high correlation > cor(unlist(test), unlist(test2)) > 0.99 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 col15 col16 col17 col18 col19 col20 col21 col22 col23 col24 col25 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 col27 col28 col29 col30 col31 col32 col33 col34 col35 col36 col37 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col38 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 col39 col40 col41 col42 col43 col44 col45 col46 col47 col48 col49 col2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col16 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col17 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col18 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col21 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col22 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col23 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col24 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col27 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col28 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col29 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col31 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col32 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col33 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col35 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col36 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col37 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col38 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col39 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col40 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col41 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col42 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col43 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE col44 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE col45 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE col46 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE col47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE col48 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE col49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE col50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE col50 col2 FALSE col3 FALSE col4 FALSE col5 FALSE col6 FALSE col7 FALSE col8 FALSE col9 FALSE col10 FALSE col11 FALSE col12 FALSE col13 FALSE col14 FALSE col15 FALSE col16 FALSE col17 FALSE col18 FALSE col19 FALSE col20 FALSE col21 FALSE col22 FALSE col23 FALSE col24 FALSE col25 FALSE col26 FALSE col27 FALSE col28 FALSE col29 FALSE col30 FALSE col31 FALSE col32 FALSE col33 FALSE col34 FALSE col35 FALSE col36 FALSE col37 FALSE col38 FALSE col39 FALSE col40 FALSE col41 FALSE col42 FALSE col43 FALSE col44 FALSE col45 FALSE col46 FALSE col47 FALSE col48 FALSE col49 FALSE col50 TRUE > > ############################# NAMES #################################### > > # Tests that dimensins have correct names > all(rownames(vegan::decostand(testdata+1, method = "clr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "clr", pseudocount=1)) == colnames(testdata)) [1] TRUE > all(rownames(vegan::decostand(testdata, method = "rclr")) == rownames(testdata)) [1] TRUE > all(colnames(vegan::decostand(testdata, method = "rclr")) == colnames(testdata)) [1] TRUE > > ######################################################################## > > # Count vs. Relative data > > # CLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "clr") > a2 <- vegan::decostand(relative.with.pseudo, method = "clr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # rCLR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "rclr") > a2 <- vegan::decostand(relative.with.pseudo, method = "rclr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] TRUE > > # ALR is identical with count and relative data > a1 <- vegan::decostand(testdata.with.pseudo, method = "alr") > a2 <- vegan::decostand(relative.with.pseudo, method = "alr") > max(abs(a1-a2)) < 1e-6 # Tolerance [1] FALSE > > ####### # ALR transformation drops one feature ################ > ncol(vegan::decostand(testdata.with.pseudo, "alr")) == ncol(testdata.with.pseudo)-1 [1] FALSE > > > > > > > > proc.time() user system elapsed 0.87 0.14 1.00