generateTestData <- function(startDate = as.Date("2020-01-01"), endDate = as.Date("2022-01-01"), chunkLength = 20) { chunk <- data.frame( collection_id = sample(1:100, chunkLength, replace = FALSE), collection_date = sample(seq(startDate, endDate, by = "days"), chunkLength), num_trap = sample(1:5, chunkLength, replace = TRUE), trap_nights = sample(1:10, chunkLength, replace = TRUE), trap_problem_bit = sample(c(TRUE, FALSE), chunkLength, replace = TRUE, prob = c(0.05, 0.95)), num_count = sample(0:50, chunkLength, replace = TRUE), sex_type = sample(c("male", "female"), chunkLength, replace = TRUE, prob = c(0.2, 0.8)), species_display_name = sample(c("Cx pipiens", "Cx tarsalis", "An freeborni"), chunkLength, replace = TRUE), trap_acronym = sample(c("CO2", "GRVD", "LCKR"), chunkLength, replace = TRUE) ) chunk$surv_year = year(chunk$collection_date) return(chunk) } # Helper function to check abundance checkAbundance <- function(abundance) { expect_true(!is.null(abundance)) expect_s3_class(abundance, "data.frame") expect_contains(colnames(abundance), list("surv_year", "Count", "Trap_Events", "Abundance")) } # Generate simulated data for testing #sample_collections <- generateTestData() # Test valid data returns a data frame formatted properly test_that("Valid data returns a data frame formatted properly", { checkAbundance(getAbundance(collections = sample_collections, interval = "Week", NULL, NULL, FALSE)) checkAbundance(getAbundance(collections = sample_collections, interval = "Biweek", NULL, NULL, FALSE)) checkAbundance(getAbundance(collections = sample_collections, interval = "Month", NULL, NULL, FALSE)) checkAbundance(getAbundance(collections = sample_collections, interval = "Month", "Cx pipiens", NULL, FALSE)) checkAbundance(getAbundance(collections = sample_collections, interval = "Biweek", NULL, "CO2", FALSE)) }) # Test getAbundance returns accurate abundance test_that("getAbundance returns accurate abundance", { # Assuming you have a specific test scenario test_cut <- sample_collections[!sample_collections$trap_problem_bit & sample_collections$sex_type=="female", ] test_cut$Week <- epiweek(test_cut$collection_date) test_cut_aggregated <- test_cut %>% group_by(surv_year, Week) %>% mutate(TN = (trap_nights * num_trap)) %>% summarize(Trap_Events = sum(TN)) test_cut_count = test_cut %>% group_by(surv_year, Week)%>%dplyr::filter(species_display_name =="Cx pipiens") %>% summarize(Count = sum(num_count)) # Now, you can compare the result of getAbundance with the manually calculated test_cut_aggregated # For example: result <- getAbundance(collections = sample_collections, interval = "Week", species_list = list("Cx pipiens"), species_seperate = FALSE) # Assert that the result matches your expectations expect_equal(sort(test_cut_count$Count, decreasing = T), sort(result$Count, decreasing = T)) }) test_that("Error thrown when incorrect collections data",{ expect_error(getAbundance(sample_collections[c(1:3)]), "Insufficent collections data provided") })