library( "urbin" ) maxLikLoaded <- require( "maxLik" ) if( !require( "mlogit" ) ) { q( save = "no" ) } if( !require( "sampleSelection" ) ) { q( save = "no" ) } options( digits = 4 ) # load data set data( "Mroz87", package = "sampleSelection" ) # create dummy variable for kids Mroz87$kids <- as.numeric( Mroz87$kids5 > 0 | Mroz87$kids618 > 0 ) ### create categorical variable Mroz87$lfp3 <- factor( ifelse( Mroz87$hours == 0, "no", ifelse( Mroz87$hours <= 1300, "part", "full" ) ), levels = c( "no", "part", "full" ) ) table( Mroz87$lfp3 ) all.equal( Mroz87$lfp3 == "no", Mroz87$lfp == 0 ) ### linear in age estMLogitLin <- mlogit( lfp3 ~ 0 | kids + age + educ, data = Mroz87, reflevel = "no", shape = "wide" ) # remove non-reproducible results such as the duration of the estimation estMLogitLin$est.stat <- NULL summary( estMLogitLin ) # vector for permuting coefficients so that they are ordered in the same way # as expected by urbinEla() coefPermuteLin <- c( seq( 1, 7, 2 ), seq( 2, 8, 2 ) ) # mean values of the explanatory variables xMeanLin <- c( 1, colMeans( Mroz87[ , c( "kids", "age", "educ" ) ] ) ) # semi-elasticity of age without standard errors urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 0 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 2 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 0:1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, xPos = 3, model = "mlogit", yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age based on numerical derivation Mroz87Lower <- as.data.frame( t( xMeanLin * c( 1, 1, 0.995, 1 ) ) ) Mroz87Lower$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mLower <- mlogit.data( Mroz87Lower, shape = "wide", choice = "lfp3" ) Mroz87Upper <- as.data.frame( t( xMeanLin * c( 1, 1, 1.005, 1 ) ) ) Mroz87Upper$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mUpper <- mlogit.data( Mroz87Upper, shape = "wide", choice = "lfp3" ) 100 * ( predict( estMLogitLin, newdata = Mroz87mUpper, type = "response" ) - predict( estMLogitLin, newdata = Mroz87mLower, type = "response" ) ) # partial derivatives of the semi-elasticity wrt the coefficients urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 0 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 1 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 2 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 0:1 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 8 ), urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, seSimplify = FALSE, model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the semi-elasticity wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 8 ), c( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLin, xPos = 3, model = "mlogit", yCat = 0:2 ) ) ) ) } # simplified partial derivatives of the semi-elasticity wrt the coefficients urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 0 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 1 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 2 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 0:1 )$derivCoef urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 1:2 )$derivCoef all.equal( rep( 0, 8 ), urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", seSimplify = TRUE, yCat = 0:2 )$derivCoef ) # semi-elasticity of age with standard errors (full covariance matrix) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 2 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0:1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 0 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 2 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 0:1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], seSimplify = FALSE, yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors, simplified) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 2 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0:1 ) urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitLin )[ coefPermuteLin ], xMeanLin, 3, model = "mlogit", sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) ### quadratic in age estMLogitQuad <- mlogit( lfp3 ~ 0 | kids + age + I(age^2) + educ, data = Mroz87, reflevel = "no", shape = "wide" ) # remove non-reproducible results such as the duration of the estimation estMLogitQuad$est.stat <- NULL summary( estMLogitQuad ) # vector for permuting coefficients so that they are ordered in the same way # as expected by urbinEla() coefPermuteQuad <- c( seq( 1, 9, 2 ), seq( 2, 10, 2 ) ) # mean values of the explanatory variables xMeanQuad <- c( xMeanLin[ 1:3 ], xMeanLin[3]^2, xMeanLin[4] ) # semi-elasticity of age without standard errors urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age based on numerical derivation Mroz87Lower <- as.data.frame( t( xMeanQuad * c( 1, 1, 0.995, 0.995^2, 1 ) ) ) Mroz87Lower$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mLower <- mlogit.data( Mroz87Lower, shape = "wide", choice = "lfp3" ) Mroz87Upper <- as.data.frame( t( xMeanQuad * c( 1, 1, 1.005, 1.005^2, 1 ) ) ) Mroz87Upper$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mUpper <- mlogit.data( Mroz87Upper, shape = "wide", choice = "lfp3" ) 100 * ( predict( estMLogitQuad, newdata = Mroz87mUpper, type = "response" ) - predict( estMLogitQuad, newdata = Mroz87mLower, type = "response" ) ) # partial derivatives of the semi-elasticity wrt the coefficients urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 0 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 1 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 2 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 0:1 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 1:2 )$derivCoef all.equal( rep( 0, 10 ), urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = FALSE, yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the semi-elasticity wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 10 ), c( numericGradient( function( x, ... ){ urbinEla( x, ... )$semEla }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuad, xPos = c( 3, 4 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # simplified partial derivatives of the semi-elasticity wrt the coefficients urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 0 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 1 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 2 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 0:1 )$derivCoef urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 1:2 )$derivCoef all.equal( rep( 0, 10 ), urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", seSimplify = TRUE, yCat = 0:2 )$derivCoef ) # semi-elasticity of age with standard errors (full covariance matrix) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], seSimplify = FALSE, yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors, simplified) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors, xMeanSd) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), seSimplify = FALSE, yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors, xMeanSd, simplified) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 2 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0:1 ) urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEla( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuad, c( 3, 4 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age based on partial derivatives calculated by the mfx package # (differs from the above, because mean(age)^2 is not the same as mean(age^2)) # estMLogitQuadMfx <- logitmfx( lfp ~ kids + age + I(age^2) + educ, data = Mroz87 ) # estMLogitQuadMfx$mfxest[ "age", 1:2 ] * xMeanQuad[ "age" ] + # 2 * estMLogitQuadMfx$mfxest[ "I(age^2)", 1:2 ] * xMeanQuad[ "age" ]^2 ### age is interval-coded (age is in the range 30-60) # create dummy variables for age intervals Mroz87$age30.37 <- Mroz87$age >= 30 & Mroz87$age <= 37 Mroz87$age38.44 <- Mroz87$age >= 38 & Mroz87$age <= 44 Mroz87$age45.52 <- Mroz87$age >= 45 & Mroz87$age <= 52 Mroz87$age53.60 <- Mroz87$age >= 53 & Mroz87$age <= 60 all.equal( Mroz87$age30.37 + Mroz87$age38.44 + Mroz87$age45.52 + Mroz87$age53.60, rep( 1, nrow( Mroz87 ) ) ) # estimation estMLogitInt <- mlogit( lfp3 ~ 0 | kids + age30.37 + age38.44 + age53.60 + educ, data = Mroz87, reflevel = "no", shape = "wide" ) # remove non-reproducible results such as the duration of the estimation estMLogitInt$est.stat <- NULL summary( estMLogitInt ) # vector for permuting coefficients so that they are ordered in the same way # as expected by urbinEla() coefPermuteInt <- c( seq( 1, 11, 2 ), seq( 2, 12, 2 ) ) # mean values of the explanatory variables xMeanInt <- c( xMeanLin[1:2], mean( Mroz87$age30.37 ), mean( Mroz87$age38.44 ), mean( Mroz87$age53.60 ), xMeanLin[4] ) # semi-elasticity of age without standard errors urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 2 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticities based on numerical derivation Mroz87Lower <- Mroz87 Mroz87Lower$age <- Mroz87$age * 0.95 Mroz87Lower$age30.37 <- Mroz87Lower$age <= 37.5 Mroz87Lower$age38.44 <- Mroz87Lower$age > 37.5 & Mroz87Lower$age <= 44.5 Mroz87Lower$age45.52 <- Mroz87Lower$age > 44.5 & Mroz87Lower$age <= 52.5 Mroz87Lower$age53.60 <- Mroz87Lower$age > 52.5 all.equal( Mroz87Lower$age30.37 + Mroz87Lower$age38.44 + Mroz87Lower$age45.52 + Mroz87Lower$age53.60, rep( 1, nrow( Mroz87 ) ) ) Mroz87Lower$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mLower <- mlogit.data( Mroz87Lower, shape = "wide", choice = "lfp3" ) Mroz87Upper <- Mroz87 Mroz87Upper$age <- Mroz87$age * 1.05 Mroz87Upper$age30.37 <- Mroz87Upper$age <= 37.5 Mroz87Upper$age38.44 <- Mroz87Upper$age > 37.5 & Mroz87Upper$age <= 44.5 Mroz87Upper$age45.52 <- Mroz87Upper$age > 44.5 & Mroz87Upper$age <= 52.5 Mroz87Upper$age53.60 <- Mroz87Upper$age > 52.5 all.equal( Mroz87Upper$age30.37 + Mroz87Upper$age38.44 + Mroz87Upper$age45.52 + Mroz87Upper$age53.60, rep( 1, nrow( Mroz87 ) ) ) Mroz87Upper$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mUpper <- mlogit.data( Mroz87Upper, shape = "wide", choice = "lfp3" ) 10 * ( colMeans( predict( estMLogitInt, newdata = Mroz87mUpper, type = "response" ) ) - colMeans( predict( estMLogitInt, newdata = Mroz87mLower, type = "response" ) ) ) Mroz87mLowerMean <- Mroz87mLower Mroz87mUpperMean <- Mroz87mUpper Mroz87mLowerMean$kids <- Mroz87mUpperMean$kids <- xMeanInt[ "kids" ] Mroz87mLowerMean$educ <- Mroz87mUpperMean$educ <- xMeanInt[ "educ" ] 10 * ( colMeans( predict( estMLogitInt, newdata = Mroz87mUpperMean, type = "response" ) ) - colMeans( predict( estMLogitInt, newdata = Mroz87mLowerMean, type = "response" ) ) ) # partial derivatives of the semi-elasticity wrt the coefficients urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0 )$derivCoef urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1 )$derivCoef urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 2 )$derivCoef urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:1 )$derivCoef urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 12 ), urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the semi-elasticity wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 12 ), c( numericGradient( function( x, ... ){ urbinElaInt( x, ... )$semEla }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3, 4, 0, 5 ), xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # semi-elasticity of age with standard errors (full covariance matrix) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 0 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 2 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 0:1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) # semi-elasticity of age with standard errors (only standard errors) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 0 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 2 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 0:1 ) urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinElaInt( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], yCat = 0:2 )[ c( "semEla", "stdEr" ) ] ), check.attributes = FALSE ) ### effect of age changing between discrete intervals ### if age is used as linear explanatory variable # mean values of the 'other' explanatory variables xMeanLinInt <- c( xMeanLin[ 1:2 ], NA, xMeanLin[4] ) # effects of age changing from the 30-40 interval to the 50-60 interval # without standard errors urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 2 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects of age changing from the 30-40 interval to the 50-60 interval # based on predicted values Mroz87Ref <- as.data.frame( t( replace( xMeanLin, 3, 35 ) ) ) Mroz87Ref$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mRef <- mlogit.data( Mroz87Ref, shape = "wide", choice = "lfp3" ) Mroz87Int <- as.data.frame( t( replace( xMeanLin, 3, 55 ) ) ) Mroz87Int$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mInt <- mlogit.data( Mroz87Int, shape = "wide", choice = "lfp3" ) predict( estMLogitLin, newdata = Mroz87mInt, type = "response" ) - predict( estMLogitLin, newdata = Mroz87mRef, type = "response" ) # partial derivatives of the semi-elasticity wrt the coefficients urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0 )$derivCoef urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 1 )$derivCoef urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 2 )$derivCoef urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0:1 )$derivCoef urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 8 ), urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the semi-elasticity wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 8 ), c( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # effects of age changing from the 30-40 interval to the 50-60 interval # (full covariance matrix) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 2 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0:1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], xMeanLinInt, 3, c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitLin )[ coefPermuteLin, coefPermuteLin ], yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects of age changing from the 30-40 interval to the 50-60 interval # (only standard errors) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 2 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0:1 ) urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffInt( coef( estMLogitLin )[ coefPermuteLin ], allXVal = xMeanLinInt, xPos = 3, refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitLin ) ) )[ coefPermuteLin ], yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) ### effect of age changing between discrete intervals ### if age is used as linear and quadratic explanatory variable # mean values of the 'other' explanatory variables xMeanQuadInt <- c( xMeanLin[ 1:2 ], NA, NA, xMeanLin[4] ) # effects of age changing from the 30-40 interval to the 50-60 interval # without standard errors urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 2 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects of age changing from the 30-40 interval to the 50-60 interval # based on predicted values Mroz87Ref <- as.data.frame( t( replace( xMeanQuad, 3:4, c( 35, 35^2 ) ) ) ) Mroz87Ref$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mRef <- mlogit.data( Mroz87Ref, shape = "wide", choice = "lfp3" ) Mroz87Int <- as.data.frame( t( replace( xMeanQuad, 3:4, c( 55, 55^2 ) ) ) ) Mroz87Int$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) Mroz87mInt <- mlogit.data( Mroz87Int, shape = "wide", choice = "lfp3" ) predict( estMLogitQuad, newdata = Mroz87mInt, type = "response" ) - predict( estMLogitQuad, newdata = Mroz87mRef, type = "response" ) # partial derivatives of the effect wrt the coefficients urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0 )$derivCoef urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 1 )$derivCoef urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 2 )$derivCoef urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0:1 )$derivCoef urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 10 ), urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the effect wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 10 ), c( numericGradient( function( x, ... ){ urbinEffInt( x, ... )$effect }, t0 = coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # effects of age changing from the 30-40 interval to the 50-60 interval # (full covariance matrix) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 2 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0:1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = vcov( estMLogitQuad )[ coefPermuteQuad, coefPermuteQuad ], yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects of age changing from the 30-40 interval to the 50-60 interval # (only standard errors) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 2 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0:1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], allXVal = xMeanQuadInt, xPos = c( 3, 4 ), refBound = c( 30, 40 ), intBound = c( 50, 60 ), model = "mlogit", sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects of age changing from the 30-40 interval to the 50-60 interval # (standard errors + mean value and standard deviation of age) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 2 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0:1 ) urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffInt( coef( estMLogitQuad )[ coefPermuteQuad ], xMeanQuadInt, c( 3, 4 ), c( 30, 40 ), c( 50, 60 ), model = "mlogit", allCoefVcov = sqrt( diag( vcov( estMLogitQuad ) ) )[ coefPermuteQuad ], xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ), yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) ### grouping and re-basing categorical variables ### effects of age changing from the 30-44 category to the 53-60 category # without standard errors urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects calculated based on predicted values names( xMeanInt )[3:5] <- c( "age30.37", "age38.44", "age53.60" ) df30.37 <- df38.44 <- df45.52 <- df53.60 <- as.data.frame( t( xMeanInt ) ) df30.37[ , 3:5 ] <- c( TRUE, FALSE, FALSE ) df38.44[ , 3:5 ] <- c( FALSE, TRUE, FALSE ) df45.52[ , 3:5 ] <- c( FALSE, FALSE, FALSE ) df53.60[ , 3:5 ] <- c( FALSE, FALSE, TRUE ) df30.37$lfp3 <- df38.44$lfp3 <- df45.52$lfp3 <- df53.60$lfp3 <- factor( "no", levels = levels( Mroz87$lfp3 ) ) df30.37m <- mlogit.data( df30.37, shape = "wide", choice = "lfp3" ) df38.44m <- mlogit.data( df38.44, shape = "wide", choice = "lfp3" ) df45.52m <- mlogit.data( df45.52, shape = "wide", choice = "lfp3" ) df53.60m <- mlogit.data( df53.60, shape = "wide", choice = "lfp3" ) predict( estMLogitInt, newdata = df53.60m, type = "response" ) - sum( Mroz87$age30.37 ) / sum( Mroz87$age30.37 + Mroz87$age38.44 ) * predict( estMLogitInt, newdata = df30.37m, type = "response" ) - sum( Mroz87$age38.44 ) / sum( Mroz87$age30.37 + Mroz87$age38.44 ) * predict( estMLogitInt, newdata = df38.44m, type = "response" ) # partial derivatives of the effect wrt the coefficients urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 2 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:1 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 12 ), urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the effect wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 12 ), c( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( -1, -1, 1, 0 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # with full covariance matrix urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # with standard errors only urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( -1, -1, 1, 0 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) ### effects of age changing from the 53-60 category to the 38-52 category # without standard errors urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1:2 ) all.equal( c( 0, NA ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # effects calculated based on predicted values sum( Mroz87$age38.44 ) / sum( Mroz87$age38.44 + Mroz87$age45.52 ) * predict( estMLogitInt, newdata = df38.44m, type = "response" ) + sum( Mroz87$age45.52 ) / sum( Mroz87$age38.44 + Mroz87$age45.52 ) * predict( estMLogitInt, newdata = df45.52m, type = "response" ) - predict( estMLogitInt, newdata = df53.60m, type = "response" ) # partial derivatives of the effect wrt the coefficients urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 2 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:1 )$derivCoef urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1:2 )$derivCoef all.equal( rep( 0, 12 ), urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:2 )$derivCoef ) # numerically computed partial derivatives of the effect wrt the coefficients if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 2 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:1 ) ) } if( maxLikLoaded ) { print( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 1:2 ) ) } if( maxLikLoaded ) { print( all.equal( rep( 0, 12 ), c( numericGradient( function( x, ... ){ urbinEffCat( x, ... )$effect }, t0 = coef( estMLogitInt )[ coefPermuteInt ], allXVal = xMeanInt, xPos = c( 3:5 ), xGroups = c( 0, 1, -1, 1 ), model = "mlogit", yCat = 0:2 ) ) ) ) } # with full covariance matrix urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), vcov( estMLogitInt )[ coefPermuteInt, coefPermuteInt ], model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE ) # with standard errors only urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 2 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0:1 ) urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 1:2 ) all.equal( rep( 0, 2 ), unlist( urbinEffCat( coef( estMLogitInt )[ coefPermuteInt ], xMeanInt, c( 3:5 ), c( 0, 1, -1, 1 ), sqrt( diag( vcov( estMLogitInt ) ) )[ coefPermuteInt ], model = "mlogit", yCat = 0:2 )[ c( "effect", "stdEr" ) ] ), check.attributes = FALSE )