test_that("hnp method works for all distribution families in simulated data", { skip_on_cran() lt_fits_1 <- lapply(lt_families, function(fam) { # cat(fam, '\n') sim_bounded_curr <- sim_bounded[sim_bounded$family == fam, ] unitquantreg(formula = y1 ~ x, data = sim_bounded_curr, tau = 0.5, family = fam) }) names(lt_fits_1) <- names(lt_families) # x11() # par(mfrow = c(2, 6)) set.seed(6969) system.time( out_hnp <- invisible(lapply(seq_along(lt_fits_1), function(i) { # cat(lt_families[[i]], '\n') hnp(lt_fits_1[[i]], main = names(lt_fits_1)[i], plot = FALSE, nsim = 10L) })) ) expect_equal(length(out_hnp), length(lt_families)) # x11() # invisible(lapply(seq_along(lt_fits), function(i) { # hnp(lt_fits[[i]], main = names(lt_fits)[i], halfnormal = FALSE) # })) # Theta varying lt_fits_2 <- lapply(lt_families, function(fam) { # cat(fam, '\n') sim_bounded_curr <- sim_bounded[sim_bounded$family == fam, ] unitquantreg(formula = y2 ~ x | z, data = sim_bounded_curr, tau = 0.5, family = fam, link.theta = "log") }) names(lt_fits_2) <- names(lt_families) # x11() # par(mfrow = c(2, 6)) set.seed(6969) system.time( out_hnp <- invisible(lapply(seq_along(lt_fits_2), function(i) { # cat(lt_families[[i]], '\n') hnp(lt_fits_2[[i]], main = names(lt_fits_2)[i], plot = FALSE, nsim = 10L) })) ) expect_equal(length(out_hnp), length(lt_families)) })