context("Binomial") sigma =3 set.seed(1) n <- 100; p <- 20 x <- matrix(rnorm(n * p), n, p) beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1) y <- x %*% beta + rnorm(n)*sigma xtest=matrix(rnorm(n * p), n, p) ytest <- xtest %*% beta + rnorm(n)*sigma # Binomial response uniLasso yb =as.numeric(y>0) fitb = uniLasso(x, yb, family="binomial") predb = predict(fitb, xtest[1:10,], s=1, type="response") cvfitb = cv.uniLasso(x, yb, family="binomial") predcvb = predict(cvfitb, xtest[1:10,], type="response") # predict at default s = "lambda.1se" fitub <- cv.uniReg(x, yb, family = "binomial") objects = enlist(fitb,predb,cvfitb,predcvb,fitub) ###saveRDS(objects, "saved_results/test_binomial.RDS") expected <- readRDS("saved_results/test_binomial.RDS") for (x in names(objects)) { cat(sprintf("Testing %s\n", x)) expect_equal(objects[[x]], expected[[x]]) }