context("Cox") set.seed(10101) N = 1000 p = 30 nzc = p/3 x = matrix(rnorm(N * p), N, p) beta = rnorm(nzc) fx = x[, seq(nzc)] %*% beta/3 hx = exp(fx) ty = rexp(N, hx) tcens = rbinom(n = N, prob = 0.3, size = 1) # censoring indicator y = cbind(time = ty, status = 1 - tcens) # y=Surv(ty,1-tcens) with library(survival) fitc = uniLasso(x, y, family = "cox") cvfitc = cv.uniLasso(x, y, family = "cox") objects = enlist(fitc,cvfitc) ###saveRDS(objects, "saved_results/test_Cox.RDS") expected <- readRDS("saved_results/test_Cox.RDS") for (x in names(objects)) { cat(sprintf("Testing %s\n", x)) expect_equal(objects[[x]], expected[[x]]) }