context("stan_occuRN function and methods") skip_on_cran() #Simulate dataset set.seed(123) dat_occ <- data.frame(x1=rnorm(500)) dat_p <- data.frame(x2=rnorm(500*5)) y <- matrix(NA, 500, 5) N <- rep(NA, 500) b <- c(0.4, -0.5, 0.3, 0.5) idx <- 1 for (i in 1:500){ N[i] <- rpois(1, exp(b[1]+b[2]*dat_occ$x1[i])) for (j in 1:5){ r <- plogis(b[3] + b[4]*dat_p$x2[idx]) p <- 1 - (1-r)^N[i] y[i,j] <- rbinom(1, 1, p) idx <- idx + 1 } } umf <- unmarkedFrameOccu(y=y, siteCovs=dat_occ, obsCovs=dat_p) umf2 <- umf umf2@y[1,] <- NA umf2@y[2,1] <- NA good_fit <- TRUE tryCatch({ fit <- suppressWarnings(stan_occuRN(~x2~x1, umf[1:10,], K=15, chains=2, iter=100, refresh=0)) fit_na <- suppressWarnings(stan_occuRN(~x2~x1, umf2[1:10,], K=15, chains=2, iter=100, refresh=0)) }, error=function(e){ good_fit <<- FALSE }) skip_if(!good_fit, "Test setup failed") test_that("stan_occuRN output structure is correct",{ expect_is(fit, "ubmsFitOccuRN") expect_is(fit, "ubmsFitOccu") expect_equal(nsamples(fit), 100) }) test_that("stan_occuRN produces accurate results",{ skip_on_cran() skip_on_ci() skip_on_covr() set.seed(123) fit_long <- suppressWarnings(stan_occuRN(~x2~x1, umf[1:200,], K=15, chains=2, iter=200, refresh=0)) fit_unm <- occuRN(~x2~x1, umf[1:200,], K=15) #similar to truth expect_RMSE(coef(fit_long), b, 0.1) #similar to unmarked expect_RMSE(coef(fit_long), coef(fit_unm), 0.02) #similar to previous known values expect_RMSE(coef(fit_long), c(0.4838,-0.6449,0.2749,0.5012), 0.05) }) test_that("stan_occuRN handles NA values",{ expect_is(coef(fit_na), "numeric") }) test_that("extract_log_lik method works",{ ll <- extract_log_lik(fit) expect_is(ll, "matrix") expect_equal(dim(ll), c(100/2 * 2, numSites(fit@data))) expect_between(sum(ll), -3000, -2700) }) test_that("ubmsFitOccuRN gof method works",{ set.seed(123) g <- gof(fit, draws=5, quiet=TRUE) expect_between(g@estimate, 30, 50) gof_plot_method <- methods::getMethod("plot", "ubmsGOF") pdf(NULL) pg <- gof_plot_method(g) dev.off() expect_is(pg, "gg") }) test_that("ubmsFitOccuRN gof method works with missing values",{ set.seed(123) g <- gof(fit_na, draws=5, quiet=TRUE) expect_is(g, "ubmsGOF") }) test_that("ubmsFitOccuRN predict method works",{ pr <- predict(fit_na, "state") expect_is(pr, "data.frame") expect_equal(dim(pr), c(10, 4)) expect_between(pr[1,1], 0.5, 3.5) pr <- predict(fit_na, "det") expect_equal(dim(pr), c(10*obsNum(umf2),4)) expect_between(pr[1,1], 0, 1) #with newdata nd <- data.frame(x1=c(0,1)) pr <- predict(fit_na, "state", newdata=nd) expect_equal(dim(pr), c(2,4)) expect_between(pr[1,1], 0.5, 3.5) }) test_that("ubmsFitOccuRN sim_z method works",{ set.seed(123) samples <- get_samples(fit, 5) zz <- sim_z(fit, samples, re.form=NULL) expect_is(zz, "matrix") expect_equal(dim(zz), c(length(samples), 10)) expect_between(mean(zz), 1, 3) set.seed(123) pz <- posterior_predict(fit, "z", draws=5) expect_equivalent(zz, pz) }) test_that("ubmsFitOccuRN sim_y method works",{ set.seed(123) samples <- get_samples(fit, 5) yy <- sim_y(fit, samples, re.form=NULL) expect_is(yy, "matrix") expect_equal(dim(yy), c(length(samples), 10*obsNum(umf))) set.seed(123) py <- posterior_predict(fit, "y", draws=5) expect_equivalent(yy, py) }) test_that("Posterior sim methods for ubmsFitOccuRN work with NAs",{ zna <- posterior_predict(fit_na, "z", draws=3) expect_equal(dim(zna), c(3,10)) expect_true(all(is.na(zna[,1]))) yna <- posterior_predict(fit_na, "y", draws=3) expect_equal(dim(yna), c(3, 10*obsNum(umf2))) expect_equal(sum(is.na(yna[1,])), 6) expect_equal(sum(is.na(yna[2,])), 6) }) test_that("Posterior linear pred methods work for ubmsFitOccuRN",{ set.seed(123) samples <- get_samples(fit, 3) lp1 <- sim_lp(fit, "state", transform=TRUE, samples=samples, newdata=NULL, re.form=NULL) expect_equal(dim(lp1), c(length(samples), 10)) set.seed(123) pl <- posterior_linpred(fit, draws=3, submodel="state") }) test_that("Fitted/residual methods work with ubmsFitOccuRN",{ ubms_fitted <- methods::getMethod("fitted", "ubmsFit") ubms_residuals <- methods::getMethod("residuals", "ubmsFit") ubms_plot <- methods::getMethod("plot", "ubmsFit") ft <- ubms_fitted(fit, "state", draws=5) ft2 <- ubms_fitted(fit, "det", draws=5) expect_equal(dim(ft), c(5, 10)) expect_equal(dim(ft2), c(5, 10*obsNum(umf))) res <- ubms_residuals(fit, "state", draws=5) res2 <- ubms_residuals(fit, "det", draws=5) expect_equal(dim(res), c(5, 10)) expect_equal(dim(res2), c(5, 10*obsNum(umf))) pdf(NULL) rp <- plot_residuals(fit, "state") rp2 <- plot_residuals(fit, "det") rp3 <- ubms_plot(fit) mp <- plot_marginal(fit, "state") dev.off() expect_is(rp, "gg") expect_is(rp2, "gg") expect_is(rp3, "gtable") expect_is(mp, "gg") }) test_that("occuRN spatial works", { skip_on_cran() umf2 <- umf umf2@siteCovs$x <- runif(numSites(umf2), 0, 10) umf2@siteCovs$y <- runif(numSites(umf2), 0, 10) fit_spat <- suppressMessages(suppressWarnings(stan_occuRN(~1~x1+RSR(x,y,1), umf2[1:20,], K=15, chains=2, iter=50, refresh=0))) expect_is(fit_spat@submodels@submodels$state, "ubmsSubmodelSpatial") expect_equal(names(coef(fit_spat))[3], "state[RSR [tau]]") ps <- plot_spatial(fit_spat) expect_is(ps, "gg") })