context("stan_multinomPois function and methods") skip_on_cran() #Simulate dataset set.seed(567) nSites <- 50 lambda <- 10 p1 <- 0.5 p2 <- 0.3 cp <- c(p1*(1-p2), p2*(1-p1), p1*p2) set.seed(9023) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, 3) for(i in 1:nSites) { y[i,] <- rmultinom(1, N[i], c(cp, 1-sum(cp)))[1:3] } # Fit model observer <- matrix(c('A','B'), nSites, 2, byrow=TRUE) umf_double <- suppressWarnings(unmarkedFrameMPois(y=y, obsCovs=list(observer=observer), siteCovs=data.frame(x=rnorm(nSites)), type="double")) umf_double_na <- umf_double umf_double_na@y[1,] <- NA umf_double_na@y[2,1] <- NA good_fit <- TRUE tryCatch({ fit_double <- suppressWarnings(stan_multinomPois(~observer-1 ~x, umf_double[1:10,], chains=2, iter=100, refresh=0)) fit_double_na <- suppressWarnings(stan_multinomPois(~observer-1 ~x, umf_double_na[1:10,], chains=2, iter=100, refresh=0)) }, error=function(e){ good_fit <<- FALSE }) ## Removal data(ovendata) ovenFrame <- unmarkedFrameMPois(ovendata.list$data, siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])), type = "removal") ovenFrame_na <- ovenFrame ovenFrame_na@y[1,] <- NA ovenFrame_na@y[2,1] <- NA tryCatch({ fit_rem <- suppressWarnings(stan_multinomPois(~1~ufc, ovenFrame[1:20,], chains=2, iter=200, refresh=0)) fit_rem_na <- suppressWarnings(stan_multinomPois(~1~ufc, ovenFrame_na[1:10,], chains=2, iter=200, refresh=0)) }, error=function(e){ good_fit <<- FALSE }) skip_if(!good_fit, "Test setup failed") test_that("stan_multinomPois output structure is correct",{ expect_is(fit_double, "ubmsFitMultinomPois") expect_is(fit_double@response, "ubmsResponseMultinomPois") expect_equal(nsamples(fit_double), 100) expect_is(fit_rem, "ubmsFitMultinomPois") }) test_that("stan_multinomPois produces accurate results",{ skip_on_cran() skip_on_ci() skip_on_covr() set.seed(123) fit_double_long <- suppressWarnings(stan_multinomPois(~observer-1 ~x, umf_double, chains=3, iter=300, refresh=0)) fit_rem_long <- suppressWarnings(stan_multinomPois(~1~ufc, ovenFrame, chains=3, iter=300, refresh=0)) um_rem <- multinomPois(~1~ufc, ovenFrame) um_double <- multinomPois(~observer-1~x, umf_double) b <- c(log(lambda), 0, log(0.5/(1-0.5)), log(0.3/(1-0.3))) #similar to trutih expect_RMSE(coef(fit_double_long), b, 0.2) #similar to unmarked expect_RMSE(coef(fit_double_long), coef(um_double), 0.05) #similar to previous known values expect_RMSE(coef(fit_double_long), c(2.2268,0.1133,0.1853,-0.5620), 0.05) #Removal expect_RMSE(coef(fit_rem_long), coef(um_rem), 0.03) expect_RMSE(coef(fit_rem_long), c(0.11398,0.17389,0.26453), 0.05) }) test_that("stan_multinomPois handles NA values",{ expect_is(coef(fit_double_na), "numeric") expect_is(coef(fit_rem_na), "numeric") }) test_that("extract_log_lik method works",{ ll <- extract_log_lik(fit_double) expect_is(ll, "matrix") expect_equal(dim(ll), c(100/2 * 2, numSites(fit_double@data))) expect_between(sum(ll), -5000, -4600) }) test_that("ubmsFitMultinomPois gof method works",{ ##here set.seed(123) g <- gof(fit_double, draws=5, quiet=TRUE) expect_between(g@estimate, 10, 35) gof_plot_method <- methods::getMethod("plot", "ubmsGOF") pdf(NULL) pg <- gof_plot_method(g) dev.off() expect_is(pg, "gg") }) test_that("ubmsFitMultinomPois gof method works with missing values",{ set.seed(123) g <- gof(fit_double_na, draws=5, quiet=TRUE) expect_is(g, "ubmsGOF") }) test_that("ubmsFitMultinomPois predict method works",{ pr <- predict(fit_double_na, "state") expect_is(pr, "data.frame") expect_equal(dim(pr), c(10, 4)) expect_between(pr[1,1], 5, 15) pr <- predict(fit_double_na, "det") expect_equal(dim(pr), c(10*obsNum(umf_double),4)) expect_between(pr[1,1], 0, 1) #with newdata nd <- data.frame(x=c(0,1)) pr <- predict(fit_double_na, "state", newdata=nd) expect_equal(dim(pr), c(2,4)) expect_between(pr[1,1], 5, 15) }) test_that("ubmsFitMultinomPois sim_z method works",{ set.seed(123) samples <- get_samples(fit_double, 5) zz <- sim_z(fit_double, samples, re.form=NULL) expect_is(zz, "matrix") expect_equal(dim(zz), c(length(samples), 10)) expect_between(mean(zz), 5, 15) set.seed(123) pz <- posterior_predict(fit_double, "z", draws=5) expect_equivalent(zz, pz) }) test_that("stan_multinomPois sim_y method works",{ set.seed(123) samples <- get_samples(fit_double, 5) yy <- sim_y(fit_double, samples, re.form=NULL) expect_is(yy, "matrix") expect_equal(dim(yy), c(length(samples), 10*3)) expect_between(mean(yy), 1, 10) set.seed(123) py <- posterior_predict(fit_double, "y", draws=5) expect_equivalent(yy, py) #set.seed(123) #samples <- get_samples(fit_rem, 5) #yy <- sim_y(fit_rem, samples, re.form=NULL) #expect_is(yy, "matrix") #expect_equal(dim(yy), c(length(samples), 20*obsNum(ovenFrame))) #expect_true(between(mean(yy), 0, 5)) }) test_that("Posterior sim methods for ubmsFitMultinomPois work with NAs",{ zna <- posterior_predict(fit_double_na, "z", draws=3) expect_equal(dim(zna), c(3,10)) expect_true(any(is.na(zna))) yna <- posterior_predict(fit_double_na, "y", draws=3) expect_equal(dim(yna), c(3,10*3)) expect_equal(sum(is.na(yna[1,])), 6) expect_equal(sum(is.na(yna[2,])), 6) }) test_that("Posterior linear pred methods work for ubmsFitMultinomPois",{ set.seed(123) samples <- get_samples(fit_double, 3) lp1 <- sim_lp(fit_double, "state", transform=TRUE, samples=samples, newdata=NULL, re.form=NULL) expect_equal(dim(lp1), c(length(samples), 10)) set.seed(123) pl <- posterior_linpred(fit_double, draws=3, submodel="state") }) test_that("Fitted/residual methods work with ubmsFitOccu",{ ubms_fitted <- methods::getMethod("fitted", "ubmsFit") ubms_residuals <- methods::getMethod("residuals", "ubmsFit") ubms_plot <- methods::getMethod("plot", "ubmsFit") ft <- ubms_fitted(fit_double, "state", draws=5) ft2 <- ubms_fitted(fit_double, "det", draws=5) expect_equal(dim(ft), c(5,10)) expect_equal(dim(ft2), c(5,30)) res <- ubms_residuals(fit_double, "state", draws=5) res2 <- ubms_residuals(fit_double, "det", draws=5) expect_equal(dim(res), c(5,10)) expect_equal(dim(res2), c(5,30)) pdf(NULL) rp <- plot_residuals(fit_double, "state") rp2 <- plot_residuals(fit_double, "det") rp3 <- ubms_plot(fit_double) mp <- plot_marginal(fit_double, "state") dev.off() expect_is(rp, "gg") expect_is(rp2, "gg") expect_is(rp3, "gtable") expect_is(mp, "gg") }) test_that("get_pifun_type returns correct value",{ expect_equal("double", get_pifun_type(umf_double)) expect_equal("removal", get_pifun_type(ovenFrame)) umf_broken <- umf_double umf_broken@piFun <- "fake" expect_error(get_pifun_type(umf_broken)) }) test_that("ubmsResponseMultinomPois find_missing method works",{ resp <- ubmsResponseMultinomPois(getY(umf_double)[1:10,], "double", "P") subs <- fit_double@submodels expect_true(!all(is.na(find_missing(resp, subs)))) resp <- ubmsResponseMultinomPois(getY(umf_double_na)[1:10,], "double", "P") subs <- fit_double_na@submodels expect_equal(find_missing(resp, subs), c(rep(TRUE,6),rep(FALSE,24))) resp <- ubmsResponseMultinomPois(getY(ovenFrame_na)[1:10,], "removal", "P") subs <- fit_rem_na@submodels expect_equal(find_missing(resp, subs), c(rep(TRUE,8),rep(FALSE,10*4-8))) }) test_that("ubmsResponseMultinomPois update_missing method works",{ resp <- ubmsResponseMultinomPois(getY(umf_double_na)[1:10,], "double", "P") subs <- fit_double_na@submodels subs@submodels$state@missing <- rep(FALSE, 10) subs@submodels$det@missing <- rep(FALSE, length(subs@submodels$det@missing)) out <- update_missing(subs, resp) expect_equal(out@submodels$state@missing, c(rep(TRUE, 2), rep(FALSE, 8))) expect_equal(out@submodels$det@missing, c(rep(TRUE, 4), rep(FALSE, 16))) resp <- ubmsResponseMultinomPois(getY(ovenFrame_na)[1:10,], "removal", "P") subs <- fit_rem_na@submodels subs@submodels$state@missing <- rep(FALSE, numSites(ovenFrame_na)) subs@submodels$det@missing <- rep(FALSE, length(subs@submodels$det@missing)) out <- update_missing(subs, resp) expect_equal(out@submodels$state@missing, c(rep(TRUE, 2), rep(FALSE, 8))) expect_equal(out@submodels$det@missing, c(rep(TRUE, 8), rep(FALSE, 32))) }) test_that("get_pi_for_multinom function works",{ pi_out <- get_pi_for_multinom(fit_double, 1:3) expect_is(pi_out, "array") expect_equal(dim(pi_out), c(10,3+1,3)) expect_equal(rowSums(pi_out[,,1]), rep(1,10)) pi_out <- get_pi_for_multinom(fit_rem, 1:3) expect_is(pi_out, "array") expect_equal(dim(pi_out), c(20,4+1,3)) expect_equal(rowSums(pi_out[,,1]), rep(1,20)) }) test_that("getP and sim_p for ubmsFitMultinomPois work",{ p <- sim_p(fit_double, 1:3) expect_equal(dim(p), c(3,10*3)) p <- sim_p(fit_double_na, 1:3) expect_equal(dim(p), c(3,10*3)) gp <- getP(fit_double, 3) expect_equal(dim(gp), c(10,3,3)) gp <- getP(fit_double_na, 3) expect_equal(dim(gp), c(10,3,3)) p <- sim_p(fit_rem, 1:3) expect_equal(dim(p), c(3,20*4)) p <- sim_p(fit_rem_na, 1:3) expect_equal(dim(p), c(3,10*4)) gp <- getP(fit_rem, 3) expect_equal(dim(gp), c(20,4,3)) gp <- getP(fit_rem_na, 3) expect_equal(dim(gp), c(10,4,3)) }) test_that("multinomPois spatial works", { skip_on_cran() umf2 <- umf_double umf2@siteCovs$x1 <- umf2@siteCovs$x umf2@siteCovs$x <- runif(numSites(umf2), 0, 10) umf2@siteCovs$y <- runif(numSites(umf2), 0, 10) fit_spat <- suppressMessages(suppressWarnings(stan_multinomPois(~1~x1+RSR(x,y,1), umf2[1:20,], chains=2, iter=100, refresh=0))) expect_is(fit_spat@submodels@submodels$state, "ubmsSubmodelSpatial") expect_equal(names(coef(fit_spat))[3], "state[RSR [tau]]") ps <- plot_spatial(fit_spat) expect_is(ps, "gg") })