test_that("recipe only", { load(test_path("data", "test_objects.RData")) grid <- collect_metrics(mt_spln_lm_grid) |> dplyr::select(deg_free) |> dplyr::distinct() purrr::map2( mt_spln_lm_grid$splits, mt_spln_lm_grid$.predictions, check_predictions, grid, obj = mt_spln_lm_grid ) # initial values for Bayes opt init <- mt_spln_lm_bo |> dplyr::filter(.iter == 0) init_grid <- collect_metrics(mt_spln_lm_bo) |> dplyr::filter(.iter == 0) |> dplyr::select(deg_free) |> dplyr::distinct() purrr::map2( init$splits, init$.predictions, check_predictions, init_grid, obj = mt_spln_lm_grid ) # Now search iterations with a dummy grid bo <- mt_spln_lm_bo |> dplyr::filter(.iter > 0) bo_grid <- init_grid |> dplyr::slice(1) purrr::map2( bo$splits, bo$.predictions, check_predictions, bo_grid, obj = mt_spln_lm_bo ) }) # ------------------------------------------------------------------------------ test_that("model only", { load(test_path("data", "test_objects.RData")) grid <- collect_metrics(mt_knn_grid) |> dplyr::select(neighbors) |> dplyr::distinct() purrr::map2( mt_knn_grid$splits, mt_knn_grid$.predictions, check_predictions, tune_df = grid, obj = mt_knn_grid ) # initial values for Bayes opt init <- mt_knn_bo |> dplyr::filter(.iter == 0) init_grid <- collect_metrics(mt_knn_bo) |> dplyr::filter(.iter == 0) |> dplyr::select(neighbors) |> distinct() purrr::map2( init$splits, init$.predictions, check_predictions, init_grid, obj = mt_knn_bo ) # Now search iterations with a dummy grid bo <- mt_knn_bo |> dplyr::filter(.iter > 0) bo_grid <- init_grid |> dplyr::slice(1) purrr::map2( bo$splits, bo$.predictions, check_predictions, bo_grid, obj = mt_knn_bo ) }) # ------------------------------------------------------------------------------ test_that("model and recipe", { load(test_path("data", "test_objects.RData")) grid <- collect_metrics(mt_spln_knn_grid) |> dplyr::select(deg_free, neighbors) |> dplyr::distinct() purrr::map2( mt_spln_knn_grid$splits, mt_spln_knn_grid$.predictions, check_predictions, grid, obj = mt_spln_knn_grid ) # initial values for Bayes opt init <- mt_spln_knn_bo |> dplyr::filter(.iter == 0) init_grid <- collect_metrics(mt_spln_knn_bo) |> dplyr::filter(.iter == 0) |> dplyr::select(deg_free, neighbors) |> dplyr::distinct() purrr::map2( init$splits, init$.predictions, check_predictions, init_grid, obj = mt_spln_knn_grid ) # Now search iterations with a dummy grid bo <- mt_spln_knn_bo |> dplyr::filter(.iter > 0) bo_grid <- init_grid |> dplyr::slice(1) purrr::map2( bo$splits, bo$.predictions, check_predictions, bo_grid, obj = mt_spln_knn_bo ) })