library(tsDyn) suppressWarnings(RNGversion("3.5.3")) ############################ ### Load data ############################ path_mod_uni <- system.file("inst/testdata/models_univariate.rds", package = "tsDyn") if(path_mod_uni=="") path_mod_uni <- system.file("testdata/models_univariate.rds", package = "tsDyn") models_univariate <- readRDS(path_mod_uni) mod <- models_univariate$object mod_no_aar <- subset(models_univariate, model != "aar")$object names(mod_no_aar) <- with(subset(models_univariate, model != "aar"), paste(model, include, lag, sep="_")) mod_notrend_noaar <- subset(models_univariate, !include %in% c("trend", "both") & model != "aar")$object mod_notrend <- subset(models_univariate, !include %in% c("trend", "both") )$object mod_const_only <- subset(models_univariate, include =="const" )$object ### Extract methods sapply(mod, AIC) sapply(mod, BIC) sapply(mod, mse) sapply(mod, MAPE) sapply(mod, coef) sapply(mod, coef, hyperCoef = FALSE) sapply(mod, function(x) head(residuals(x))) sapply(mod, function(x) head(residuals(x, initVal = FALSE))) lapply(mod_const_only, predict, n.ahead=10) lapply(mod_const_only, predict, n.ahead=3, type="MC", seed=1234) lapply(mod_const_only, predict, n.ahead=3, type="bootstrap", seed=1234) lapply(mod_const_only, predict, n.ahead=3, type="block-bootstrap", seed=1234) ## charac root lapply(mod_notrend_noaar, charac_root) lapply(mod_notrend_noaar, ar_mean) ### Utility functions sapply(mod, getTh) ## Output of mod_no_aar[-44] is platform/machine specific... ## Output of mod_no_aar[-23] is platform/machine specific: doesn't work on M1mac suppressMessages(suppressWarnings(sapply(mod_no_aar[-c(23, 44)], tsDyn:::mod_refit_check))) ### Pred Roll, acc_stat: x <- log10(lynx) mod <- list() mod[["linear"]] <- linear(x, m=2) mod[["setar"]] <- setar(x, m=2, thDelay=1, trace = FALSE) mod[["star"]] <- star(x, m=2, thDelay=1, trace = FALSE) mod[["lstar"]] <- lstar(x, m=2, thDelay=1, trace = FALSE) mod[["aar"]] <- aar(x, m=2) x_small <- x[1:100] mod_small <- list() mod_small[["linear"]] <- linear(x_small, m=2) mod_small[["setar"]] <- setar(x_small, m=2, thDelay=1, th=getTh(mod[["setar"]]), trace = FALSE) mod_small[["lstar"]] <- lstar(x_small, m=2, thDelay=1, th=getTh(mod[["lstar"]]), gamma=coef(mod[["lstar"]])["gamma"], trace = FALSE) mod_small[["aar"]] <- aar(x_small, m=2) pred_rolls_1 <- lapply(mod_small, predict_rolling, n.ahead=1, newdata=x[101:114]) sapply(pred_rolls_1, function(x) x$pred[[1]]) sapply(pred_rolls_1, accuracy_stat)[-1,] ## removing first line as gave 'factor' under R<4 pred_rolls_12 <- lapply(mod_small, predict_rolling, n.ahead=1:2, newdata=x[101:114]) sapply(pred_rolls_12, function(x) x$pred[[1]]) lapply(pred_rolls_12, accuracy_stat)