R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> library(tsDyn)
> suppressMessages(library(dplyr))
> library(purrr)
> library(tidyr)
> suppressWarnings(RNGversion("3.5.3"))
> 
> 
> plot_GIRF_line_low <-  tsDyn:::plot_GIRF_line_low
> irf_1_shock <- tsDyn:::irf_1_shock
> irf_1_shock_ave <- tsDyn:::irf_1_shock_ave
> 
> 
> 
> add.regime = FALSE
> shock_both = TRUE
> n.hist =  5
> n.ahead =  10
> n.shock = 20
> 
> ############################
> ### Load data
> ############################
> path_mod_uni <- system.file("inst/testdata/models_univariate.rds", package = "tsDyn")
> if(path_mod_uni=="") path_mod_uni <- system.file("testdata/models_univariate.rds", package = "tsDyn")
> 
> path_mod_multi <- system.file("testdata/models_multivariate.rds", package = "tsDyn")
> 
> models_ar_setar <- readRDS(path_mod_uni) %>% 
+   filter(model %in% c("linear", "setar"))
> 
> models_multivariate <- readRDS(path_mod_multi)
> 
> ############################
> ### Univariate
> ############################
> 
> 
> mod_1_uni <- models_ar_setar %>% 
+   filter(model == "setar") %>% {.$object[[1]]}
> 
> mod_1_ar <- models_ar_setar %>% 
+   filter(model == "linear") %>% {.$object[[1]]}
> 
> 
> mod_1_uni_1_shock <- irf_1_shock(object=mod_1_uni, 
+                                  shock = 1,
+                                  hist = 0,
+                                  seed = 123)
> 
> mod_ar_1_shock <- irf_1_shock(mod_1_ar, shock = 1, hist = 0,seed = 123)
> 
> mod_1_uni_1_shock
   var n.ahead    sim_1    sim_2
2   lh       0 2.996618 1.996618
3   lh       1 2.155985 1.628571
4   lh       2 1.664436 2.461223
5   lh       3 3.650510 3.025997
6   lh       4 3.101592 2.772216
7   lh       5 2.823117 2.649399
8   lh       6 2.720745 2.629123
9   lh       7 1.983854 1.935531
10  lh       8 1.560084 1.534598
11  lh       9 2.506257 2.483755
12  lh      10 2.696483 2.684616
> plot_GIRF_line_low(x=mod_1_uni_1_shock)
> 
> plot_GIRF_line_low(x=mod_ar_1_shock)
> plot(irf(mod_1_ar, boot = FALSE))
> 
> mod_1_uni_1_shock_ave <- irf_1_shock_ave(object = mod_1_uni, 
+                                          shock = 1,
+                                          hist = 0, 
+                                          seed = 123)
> 
> plot_GIRF_line_low(x=mod_1_uni_1_shock_ave)
> 
> mod_1_uni_1_girf <- GIRF(object = mod_1_uni, 
+                          hist_li = list(1),
+                          shock_li = list(0.1, 0.11, -0.1, -0.11), 
+                          R = 2, 
+                          seed = 123)
> 
> head(mod_1_uni_1_girf)
  n_simu hist_x1_l1 shock_var1 n.ahead var    sim_1    sim_2        girf
1      1          1        0.1       0  lh 2.848254 2.748254 0.100000000
2      1          1        0.1       1  lh 2.284368 2.231627 0.052741426
3      1          1        0.1       2  lh 1.788436 1.760620 0.027816580
4      1          1        0.1       3  lh 2.518312 2.498697 0.019615216
5      1          1        0.1       4  lh 3.239090 3.226137 0.012953068
6      1          1        0.1       5  lh 2.617766 2.610934 0.006831633
> plot_GIRF_line_low(mod_1_uni_1_girf, n_simu  = 1:4)
> 
> mod_1_uni_1_girf_big <- GIRF(object = mod_1_uni, 
+                              n.hist = 5,
+                              R = 2, 
+                              seed = 123)
> 
> plot(x=mod_1_uni_1_girf_big, plot_type = "density")
> plot(x=mod_1_uni_1_girf_big, plot_type = "line", n_simu = 1:50, add_legend =FALSE)
> 
> ## Simple, given shocks
> models_ar_setar %>% 
+   mutate(girf = map2(object, lag, ~GIRF(object=.x, n.ahead = 3,
+                                         hist_li = list(rep(1.6, .y)),
+                                         shock_li = list(0.01), R = 2, seed = 123) %>% as_tibble)) %>% 
+   select(-object) %>% 
+   unnest(girf) %>% 
+   as.data.frame() %>% 
+   head(10) %>% 
+   print(digits=3)
   lag include  model nthresh thDelay n_simu hist_x1_l1 shock_var1 n.ahead var
1    1    both linear      NA      NA      1        1.6       0.01       0   x
2    1    both linear      NA      NA      1        1.6       0.01       1   x
3    1    both linear      NA      NA      1        1.6       0.01       2   x
4    1    both linear      NA      NA      1        1.6       0.01       3   x
5    1   const linear      NA      NA      1        1.6       0.01       0   x
6    1   const linear      NA      NA      1        1.6       0.01       1   x
7    1   const linear      NA      NA      1        1.6       0.01       2   x
8    1   const linear      NA      NA      1        1.6       0.01       3   x
9    1    none linear      NA      NA      1        1.6       0.01       0   x
10   1    none linear      NA      NA      1        1.6       0.01       1   x
   sim_1 sim_2    girf hist_x1_l2
1   2.92  2.91 0.01000         NA
2   2.18  2.17 0.00529         NA
3   1.74  1.74 0.00280         NA
4   2.63  2.63 0.00148         NA
5   3.10  3.09 0.01000         NA
6   2.48  2.47 0.00586         NA
7   2.03  2.02 0.00343         NA
8   3.01  3.00 0.00201         NA
9   2.97  2.96 0.01000         NA
10  2.80  2.79 0.00984         NA
> 
> ## Simple, random
> models_ar_setar %>% 
+   mutate(girf = map(object, ~GIRF(object=., n.ahead = 3, n.hist = 3, n.shock = 3,
+                                   R = 2, seed = 123) %>% as_tibble)) %>% 
+   select(-object) %>% 
+   unnest(girf) %>% 
+   as.data.frame() %>% 
+   head(10) %>% 
+   print(digits=3)
   lag include  model nthresh thDelay n_simu hist_x1_l1 shock_var1 n.ahead var
1    1    both linear      NA      NA      1        1.8       1.19       0   x
2    1    both linear      NA      NA      1        1.8       1.19       1   x
3    1    both linear      NA      NA      1        1.8       1.19       2   x
4    1    both linear      NA      NA      1        1.8       1.19       3   x
5    1    both linear      NA      NA      2        1.4       1.19       0   x
6    1    both linear      NA      NA      2        1.4       1.19       1   x
7    1    both linear      NA      NA      2        1.4       1.19       2   x
8    1    both linear      NA      NA      2        1.4       1.19       3   x
9    1    both linear      NA      NA      3        2.2       1.19       0   x
10   1    both linear      NA      NA      3        2.2       1.19       1   x
   sim_1 sim_2  girf hist_x1_l2
1   4.20  3.01 1.185         NA
2   2.86  2.23 0.627         NA
3   2.10  1.77 0.332         NA
4   2.82  2.65 0.175         NA
5   3.99  2.80 1.185         NA
6   2.74  2.12 0.627         NA
7   2.04  1.71 0.332         NA
8   2.79  2.62 0.175         NA
9   4.41  3.22 1.185         NA
10  2.97  2.34 0.627         NA
> 
> 
> 
> ############################
> ### Multivariate
> ############################
> 
> mod_TVAR <- models_multivariate %>% 
+   filter(model == "TVAR" & lag ==2) %>% {.$object[[1]]}
> 
> mod_VAR <- models_multivariate %>% 
+   filter(model == "VAR"& lag ==2) %>% {.$object[[1]]}
> 
> mod_VECM <- models_multivariate %>% 
+   filter(model == "VECM" & lag ==2) %>% {.$object[[1]]}
> 
> mod_TVAR_1_shock <- irf_1_shock(object = mod_TVAR, 
+                                    shock = matrix(c(1, 0), nrow = 1),
+                                    hist = matrix(c(0, 0, 0, 0), nrow = 2),
+                                    seed = 123)
> 
> mod_VAR_1_shock <- irf_1_shock(object = mod_VAR, shock = matrix(c(1, 0), nrow = 1),
+                                hist = matrix(c(0, 0, 0, 0), nrow = 2), seed = 123)
> 
> mod_VECM_1_shock <- irf_1_shock(object = mod_VECM, shock = matrix(c(1, 0), nrow = 1),
+                                 hist = matrix(rep(0, 6), nrow = 3), seed = 123)
> 
> 
> plot_GIRF_line_low(x=mod_VAR_1_shock)
> plot_GIRF_line_low(x=mod_TVAR_1_shock)
> 
> plot_GIRF_line_low(x=mod_TVAR_1_shock, var = "cpiUSA")
> plot_GIRF_line_low(x=mod_VAR_1_shock, var = "cpiUSA")
> 
> mod_TVAR_1_shock_ave <- irf_1_shock_ave(mod_TVAR, 
+                                         shock = matrix(c(1, 0), nrow = 1),
+                                         hist = matrix(c(0, 0, 0, 0), nrow = 2),
+                                         seed = 123)
> 
> 
> plot_GIRF_line_low(x=mod_TVAR_1_shock_ave)
> 
> TVAR_GIRF <- GIRF(object=mod_TVAR, 
+                   shock_li = list(matrix(c(1, 0), nrow = 1),
+                                   matrix(c(0, 1), nrow = 1)),
+                   hist_li = list(matrix(c(0, 0, 0, 0), nrow = 2),
+                                  matrix(c(0, 1, 0, 0), nrow = 2)),
+                   R = 2,
+                   seed = 123) 
> 
> gi_out <- GIRF(object=mod_TVAR, seed = 123, n.hist = 40, R = 2) 
> plot(density(residuals(mod_TVAR)[, 1]))
> head(gi_out)
  n_simu hist_x1_l1 hist_x1_l2 hist_x2_l1 hist_x2_l2 shock_var1 shock_var2
1      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
2      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
3      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
4      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
5      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
6      1     1.1647     1.1691      55.14      55.63 0.01642286 0.08589973
  n.ahead    var    sim_1    sim_2       girf
1       0 cpiUSA 56.13770 56.05180 0.08589973
2       1 cpiUSA 56.47797 56.37500 0.10297148
3       2 cpiUSA 56.73699 56.62066 0.11633341
4       3 cpiUSA 56.93175 56.80123 0.13052292
5       4 cpiUSA 57.21324 57.06854 0.14469542
6       5 cpiUSA 57.35781 57.19943 0.15837356
> plot(x=gi_out, var = "dolcan")
> plot(x=gi_out, var = "cpiUSA")
> 
> ## Simple, random
> models_multivariate %>% 
+   # head(2) %>% 
+   mutate(girf = map(object, ~GIRF(object=., n.ahead = 3, n.hist = 3, n.shock = 3,
+                                   R = 2, seed = 123) %>% head(2))) %>% 
+   select(-object) %>% 
+   unnest(girf) %>% 
+   select(-object_vars) %>% 
+   as.data.frame() %>% 
+   slice(10:20) %>% 
+   print(digits=3)
   lag include model nthresh n_simu hist_x1_l1 hist_x2_l1 shock_var1 shock_var2
1    2    both   VAR      NA      1       1.16       55.1     0.0162      0.129
2    2   const   VAR      NA      1       1.16       55.1     0.0164      0.127
3    2   const   VAR      NA      1       1.16       55.1     0.0164      0.127
4    2    none   VAR      NA      1       1.16       55.1     0.0161      0.122
5    2    none   VAR      NA      1       1.16       55.1     0.0161      0.122
6    2   trend   VAR      NA      1       1.16       55.1     0.0156      0.116
7    2   trend   VAR      NA      1       1.16       55.1     0.0156      0.116
8    1    both  VECM      NA      1       1.16       55.1     0.0161      0.124
9    1    both  VECM      NA      1       1.16       55.1     0.0161      0.124
10   1   const  VECM      NA      1       1.16       55.1     0.0163      0.126
11   1   const  VECM      NA      1       1.16       55.1     0.0163      0.126
   n.ahead    var sim_1 sim_2  girf hist_x1_l2 hist_x2_l2 hist_x1_l3 hist_x2_l3
1        1 cpiUSA  56.4  56.2 0.197       1.17       55.6         NA         NA
2        0 cpiUSA  56.2  56.0 0.127       1.17       55.6         NA         NA
3        1 cpiUSA  56.5  56.3 0.193       1.17       55.6         NA         NA
4        0 cpiUSA  56.2  56.0 0.122       1.17       55.6         NA         NA
5        1 cpiUSA  56.5  56.3 0.193       1.17       55.6         NA         NA
6        0 cpiUSA  56.3  56.2 0.116       1.17       55.6         NA         NA
7        1 cpiUSA  56.7  56.6 0.180       1.17       55.6         NA         NA
8        0 cpiUSA  56.2  56.1 0.124       1.17       55.6         NA         NA
9        1 cpiUSA  56.6  56.4 0.189       1.17       55.6         NA         NA
10       0 cpiUSA  56.2  56.0 0.126       1.17       55.6         NA         NA
11       1 cpiUSA  56.5  56.3 0.193       1.17       55.6         NA         NA
> 
> 
> proc.time()
   user  system elapsed 
  10.01    0.64   10.61