library(survival) # of note, the p-value from lrtest is one-sided pnorm(z), while the p-value # from survdiff is two-sided 1 - pchisq(z^2, 1) test_that("lrtest: two-sided p-value", { df1 <- lrtest(ovarian, treat="rx", time="futime", event="fustat") df2 <- survdiff(Surv(futime, fustat) ~ rx, data=ovarian) expect_equal(2*min(df1$logRankPValue, 1-df1$logRankPValue), df2$pvalue) }) test_that("lrtest: stratified log-rank test", { data1 <- subset(rawdata, iterationNumber == 1) df1 <- lrtest(data1, stratum="stratum", treat="treatmentGroup", time="timeUnderObservation", event="event") df2 <- survdiff(Surv(timeUnderObservation, event) ~ treatmentGroup + strata(stratum), data=data1) expect_equal(2*min(df1$logRankPValue, 1-df1$logRankPValue), df2$pvalue) }) test_that("lrtest: weighted log-rank test", { df1 <- lrtest(aml, treat="x", time="time", event="status", rho1=0.5) df2 <- survdiff(Surv(time, status) ~ x, rho=0.5, data=aml) expect_equal(2*min(df1$logRankPValue, 1-df1$logRankPValue), df2$pvalue) })