# Testing that results with analytical standard errors and bootstrap are comparable test_that("multiplication works", { # generating dataset without errors test_panel = generate_test_panel() # ------------------------------ # Performing tests # ------------------------------ ddd_analytical <- ddd(yname = "outcome", tname = "year", idname = "id", gname = "treat", pname = "partition", xformla = ~x1 + x2, data = test_panel, control_group = NULL, base_period = NULL, est_method = "dr", weightsname = NULL, boot = TRUE, nboot = 1000, inffunc = FALSE, skip_data_checks = FALSE) ddd_boostrap <- ddd(yname = "outcome", tname = "year", idname = "id", gname = "treat", pname = "partition", xformla = ~x1 + x2, data = test_panel, control_group = NULL, base_period = NULL, est_method = "dr", weightsname = NULL, boot = FALSE, nboot = NULL, inffunc = FALSE, skip_data_checks = FALSE) # Check that point estimates are the same expect_equal(ddd_analytical$ATT, ddd_boostrap$ATT) # Check that standard errors are comparable expect_equal(ddd_analytical$se, ddd_boostrap$se, tolerance = 0.5) })