library(ranger) library(randomForest) test_that('trainsetBias works for ranger & classification tree', { set.seed(42L) trainID <- sample(150, 120) rfobj <- ranger(Species ~ ., iris[trainID, ], keep.inbag = TRUE) tidy.RF <- tidyRF(rfobj, iris[trainID, -5], iris[trainID, 5]) trainset.bias <- trainsetBias(tidy.RF) expect_equal(dim(trainset.bias), c(1, 3)) expect_equal(dimnames(trainset.bias), list('Bias', levels(iris$Species))) }) test_that('trainsetBias works for randomForest & classification tree', { set.seed(42L) trainID <- sample(150, 120) rfobj <- randomForest(Species ~ ., iris[trainID, ], keep.inbag = TRUE) tidy.RF <- tidyRF(rfobj, iris[trainID, -5], iris[trainID, 5]) trainset.bias <- trainsetBias(tidy.RF) expect_equal(dim(trainset.bias), c(1, 3)) expect_equal(dimnames(trainset.bias), list('Bias', levels(iris$Species))) }) test_that('trainsetBias works for ranger & regression tree', { set.seed(42L) trainID <- sample(32, 25) rfobj <- ranger(mpg ~ ., mtcars[trainID, ], keep.inbag = TRUE) tidy.RF <- tidyRF(rfobj, mtcars[trainID, -1], mtcars[trainID, 1]) trainset.bias <- trainsetBias(tidy.RF) expect_equal(dim(trainset.bias), c(1, 1)) expect_equal(dimnames(trainset.bias), list('Bias', 'Response')) }) test_that('trainsetBias works for randomForest & regression tree', { set.seed(42L) trainID <- sample(32, 25) rfobj <- randomForest(mpg ~ ., mtcars[trainID, ], keep.inbag = TRUE) tidy.RF <- tidyRF(rfobj, mtcars[trainID, -1], mtcars[trainID, 1]) trainset.bias <- trainsetBias(tidy.RF) expect_equal(dim(trainset.bias), c(1, 1)) expect_equal(dimnames(trainset.bias), list('Bias', 'Response')) })