### Test continuous / sparse test_that("continuous", { set.seed(24101968) library("tramvs") N <- 1e2 P <- 5 nz <- 3 beta <- rep(c(3, 0), c(nz, P - nz)) X <- matrix(rnorm(N * P), nrow = N, ncol = P) Y <- 1 + X %*% beta + rnorm(N) dat <- data.frame(y = Y, x = X) res <- tramvs(y ~ ., data = dat, modFUN = Lm) as(as.matrix(coef(res, as.lm = TRUE)), "sparseMatrix") # S3 methods print(res) summary(res) plot(res, type = "b") plot(res, which = "path") logLik(res) SIC(res) coef(res) predict(res, which = "distribution", type = "trafo") residuals(res) # Active set expect_equal(support(res), c("x.1", "x.2", "x.3")) # Compare with abess ------------------------------------------------------ if (require("abess")) { res_abess <- abess(y ~ ., data = dat, family = "gaussian") coef(res_abess)[,-1] } })