library("tram") library("mvtnorm") library("multcomp") library("sandwich") library("numDeriv") options(digits = 2) set.seed(25) chk <- function(..., tol = 1e-3) all.equal(..., tol = tol, check.attributes = FALSE) OR <- 1 J <- 4 N <- 100 S <- cov2cor(tcrossprod(matrix(runif(J * J), ncol = J))) y <- rmvnorm(N, sigma = S) u <- as.data.frame(plogis(y)) x <- runif(N) d <- cbind(u, x) un <- colnames(d)[1:J] m <- lapply(un, function(i) BoxCox(as.formula(paste(i, "~ x")), data = d, bounds = c(0, 1), support = c(0, 1), order = OR)) m$data <- d m$formula <- ~ 1 ### conditional model m$conditional <- TRUE mm <- do.call("mmlt", m) chk(c(logLik(mm)), sum(predict(mm, newdata = d, type = "density", log = TRUE))) L <- as.array(coef(mm, type = "Lambda"))[,,1] chk(as.array(coef(mm, type = "Lambdainv"))[,,1], solve(L)) chk(as.array(coef(mm, type = "Sigma"))[,,1], tcrossprod(solve(L))) chk(as.array(coef(mm, type = "Cor"))[,,1], cov2cor(tcrossprod(solve(L)))) chk(colSums(estfun(mm)), -colSums(mm$score(coef(mm, type = "all")))) ### marginal normal m$conditional <- FALSE mmN <- do.call("mmlt", m) chk(logLik(mm), logLik(mmN)) chk(c(logLik(mmN)), sum(predict(mmN, newdata = d, type = "density", log = TRUE))) cf1 <- do.call("c", lapply(m[1:J], function(x) coef(as.mlt(x)))) cf2 <- coef(mmN)[1:length(cf1)] # cbind(cf1, cf2) sd1 <- sqrt(do.call("c", lapply(m[1:J], function(x) diag(vcov(as.mlt(x)))))) sd2 <- sqrt(diag(vcov(mmN)))[1:length(sd1)] # cbind(sd1, sd2) vcov(mmN)["V1.x", "V4.x"] chk(as.array(coef(mm, type = "Lambda"))[,,1], as.array(coef(mmN, type = "Lambdapar"))[,,1]) chk(as.array(coef(mm, type = "Cor"))[,,1], as.array(coef(mmN, type = "Cor"))[,,1]) chk(as.array(coef(mm, type = "Spearman"))[,,1], as.array(coef(mmN, type = "Spearman"))[,,1]) chk(predict(mm, newdata = d, type = "density", log = TRUE), predict(mmN, newdata = d, type = "density", log = TRUE)) chk(predict(mm, newdata = d, type = "distribution", log = TRUE), predict(mmN, newdata = d, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "distribution", log = TRUE)) chk(sapply(1:J, function(i) predict(mm, margins = i, newdata = d, type = "density", log = TRUE)), sapply(1:J, function(i) predict(mmN, margins = i, newdata = d, type = "density", log = TRUE))) ### check marginal predictions m1 <- m[[1]] m2 <- do.call("mmlt", m[-(3:4)]) m3 <- do.call("mmlt", m[-4]) ### we expect differences here if (FALSE) { chk(c(predict(m1, newdata = d, type = "density", log = TRUE)), c(predict(mmN, newdata = d, margins = 1, type = "density", log = TRUE))) chk(predict(m2, newdata = d, margins = 1:2, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "density", log = TRUE)) chk(predict(m2, newdata = d, margins = 1:2, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "distribution", log = TRUE)) chk(predict(m3, newdata = d, margins = 1:3, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "density", log = TRUE)) chk(predict(m3, newdata = d, margins = 1:3, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "distribution", log = TRUE)) } ### marginal normal model mm <- mmN ### marginal normal, implemented differently for (j in 1:J) m[[j]]$todistr$name <- "CarlFriedrich" mmN <- do.call("mmlt", m) chk(logLik(mm), logLik(mmN)) chk(c(logLik(mmN)), sum(predict(mmN, newdata = d, type = "density", log = TRUE))) cf1 <- do.call("c", lapply(m[1:J], function(x) coef(as.mlt(x)))) cf2 <- coef(mmN)[1:length(cf1)] # cbind(cf1, cf2) sd1 <- sqrt(do.call("c", lapply(m[1:J], function(x) diag(vcov(as.mlt(x)))))) sd2 <- sqrt(diag(vcov(mmN)))[1:length(sd1)] # cbind(sd1, sd2) vcov(mmN)["V1.x", "V4.x"] chk(as.array(coef(mm, type = "Lambda"))[,,1], as.array(coef(mmN, type = "Lambda"))[,,1]) chk(as.array(coef(mm, type = "Lambdainv"))[,,1], as.array(coef(mmN, type = "Lambdainv"))[,,1]) chk(as.array(coef(mm, type = "Sigma"))[,,1], as.array(coef(mmN, type = "Sigma"))[,,1]) chk(as.array(coef(mm, type = "Spearman"))[,,1], as.array(coef(mmN, type = "Spearman"))[,,1]) chk(predict(mm, newdata = d, type = "density", log = TRUE), predict(mmN, newdata = d, type = "density", log = TRUE)) chk(predict(mm, newdata = d, type = "distribution", log = TRUE), predict(mmN, newdata = d, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "distribution", log = TRUE)) chk(sapply(1:J, function(i) predict(mm, margins = i, newdata = d, type = "density", log = TRUE)), sapply(1:J, function(i) predict(mmN, margins = i, newdata = d, type = "density", log = TRUE))) ### marginal Colr models m <- lapply(un, function(i) Colr(as.formula(paste(i, "~ x")), data = d, bounds = c(0, 1), support = c(0, 1), order = OR)) m$data <- d m$formula <- ~ 1 mmC <- do.call("mmlt", m) chk(c(logLik(mmC)), sum(predict(mmC, newdata = d, type = "density", log = TRUE))) logLik(mmC) ### conditional models m <- lapply(un, function(i) BoxCox(as.formula(paste(i, "~ x")), data = d, bounds = c(0, 1), support = c(0, 1), order = OR)) m$data <- d m$formula <- ~ x m$conditional <- TRUE mm <- do.call("mmlt", m) chk(c(logLik(mm)), sum(predict(mm, newdata = d, type = "density", log = TRUE))) L <- as.array(coef(mm, newdata = d, type = "Lambda"))[,,1] chk(as.array(coef(mm, newdata = d, type = "Lambdainv"))[,,1], solve(L)) chk(as.array(coef(mm, newdata = d, type = "Sigma"))[,,1], tcrossprod(solve(L))) chk(as.array(coef(mm, newdata = d, type = "Cor"))[,,1], cov2cor(tcrossprod(solve(L)))) ### with marginal parameterisation m$conditional <- FALSE mmN <- do.call("mmlt", m) ### expect differences here if (FALSE) { chk(logLik(mm), logLik(mmN)) chk(c(logLik(mmN)), sum(predict(mmN, newdata = d, type = "density", log = TRUE))) chk(as.array(coef(mm, newdata = d, type = "Lambda"))[,,1], as.array(coef(mmN, newdata = d, type = "Lambdapar"))[,,1]) chk(as.array(coef(mm, newdata = d, type = "Cor"))[,,1], as.array(coef(mmN, newdata = d, type = "Cor"))[,,1]) chk(as.array(coef(mm, newdata = d, type = "Spearman"))[,,1], as.array(coef(mmN, newdata = d, type = "Spearman"))[,,1]) chk(predict(mm, newdata = d, type = "density", log = TRUE), predict(mmN, newdata = d, type = "density", log = TRUE)) chk(predict(mm, newdata = d, type = "distribution", log = TRUE), predict(mmN, newdata = d, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "distribution", log = TRUE)) chk(sapply(1:J, function(i) predict(mm, margins = i, newdata = d, type = "density", log = TRUE)), sapply(1:J, function(i) predict(mmN, margins = i, newdata = d, type = "density", log = TRUE))) } ### marginal model mm <- mmN ### implemented differently for (j in 1:J) m[[j]]$todistr$name <- "CarlFriedrich" mmN <- do.call("mmlt", m) chk(logLik(mm), logLik(mmN)) chk(c(logLik(mmN)), sum(predict(mmN, newdata = d, type = "density", log = TRUE))) chk(as.array(coef(mm, newdata = d, type = "Lambda"))[,,1], as.array(coef(mmN, newdata = d, type = "Lambda"))[,,1]) chk(as.array(coef(mm, newdata = d, type = "Lambdainv"))[,,1], as.array(coef(mmN, newdata = d, type = "Lambdainv"))[,,1]) chk(as.array(coef(mm, newdata = d, type = "Sigma"))[,,1], as.array(coef(mmN, newdata = d, type = "Sigma"))[,,1]) chk(as.array(coef(mm, newdata = d, type = "Spearman"))[,,1], as.array(coef(mmN, newdata = d, type = "Spearman"))[,,1]) chk(predict(mm, newdata = d, type = "density", log = TRUE), predict(mmN, newdata = d, type = "density", log = TRUE)) chk(predict(mm, newdata = d, type = "distribution", log = TRUE), predict(mmN, newdata = d, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:2, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:2, type = "distribution", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "density", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "density", log = TRUE)) chk(predict(mm, newdata = d, margins = 1:3, type = "distribution", log = TRUE), predict(mmN, newdata = d, margins = 1:3, type = "distribution", log = TRUE)) chk(sapply(1:J, function(i) predict(mm, margins = i, newdata = d, type = "density", log = TRUE)), sapply(1:J, function(i) predict(mmN, margins = i, newdata = d, type = "density", log = TRUE))) ### conditional Colr m <- lapply(un, function(i) Colr(as.formula(paste(i, "~ x")), data = d, bounds = c(0, 1), support = c(0, 1), order = OR)) m$data <- d m$formula <- ~ x mmC <- do.call("mmlt", m) chk(c(logLik(mmC)), sum(predict(mmC, newdata = d, type = "density", log = TRUE))) logLik(mmC) ##### FIRST SCENARIO: CONSTANT LAMBDA ##### set.seed(290875) ll <- numeric(50) p <- 3 X <- matrix(runif(N * p), ncol = p) m1 <- 1 + X %*% c(2, 1, 1) m2 <- 1 + X %*% c(1, 2, 1) lb <- (off <- 0.5) + X %*% (cf <- c(0, 2, 0)) d <- data.frame(X) Y <- matrix(NA, nrow = N, ncol = 2) colnames(Y) <- c("Y1", "Y2") cr <- numeric(N) for (i in 1:N) { Si <- diag(2) Si[1,2] <- Si[2,1] <- .5 cr[i] <- cov2cor(Si)[2,1] Y[i,] <- rmvnorm(1, mean = c(m1[i], m2[i]), sigma = Si) } ##### only BoxCox margins: ##### d <- cbind(d, Y) b1 <- as.mlt(Lm(Y1 ~ X1 + X2 + X3, data = d)) b2 <- as.mlt(Lm(Y2 ~ X1 + X2 + X3, data = d)) ## constant correlations. expect identical logliks and lambda parameters mm01 <- mmlt(b1, b2, formula = ~ 1, data = d) mm02 <- mmlt(b2, b1, formula = ~ 1, data = d) chk(logLik(mm01), logLik(mm02)) chk(c(coef(mm01)["Y2.Y1.(Intercept)"]), c(coef(mm02)["Y1.Y2.(Intercept)"])) ## checking gradients chk(c(numDeriv::grad(mm01$ll, mm02$par)), c(mm01$sc(mm02$par))) ## predicting marginal distributions and comparing across models with constant lambda chk(predict(mm01, newdata = d[1:5,], q = -2:2, margins = 1, type = "distribution"), predict(mm02, newdata = d[1:5,], q = -2:2, margins = 2, type = "distribution")) ## expect correlations to be the same for the model with constant lambdas chk(c(coef(mm01, newdata = d[1:5,], type = "Cor")), c(coef(mm02, newdata = d[1:5,], type = "Cor"))) ##### mix of BoxCox and Colr margins: ##### d$Y1 <- (d$Y1 - min(d$Y1))/(max(d$Y1) - min(d$Y1)) b1 <- as.mlt(Colr(Y1 ~ X1 + X2 + X3, data = d, order = OR)) b2 <- as.mlt(Lm(Y2 ~ X1 + X2 + X3, data = d)) mm01 <- mmlt(b1, b2, formula = ~ 1, data = d) mm02 <- mmlt(b2, b1, formula = ~ 1, data = d) chk(logLik(mm01), logLik(mm02)) ### model is marginal, so expect same marginal coeff cf1 <- coef(mm01) cf1 <- cf1[-length(cf1)] cf2 <- coef(mm02) cf2 <- cf2[names(cf1)] chk(cf1, cf2) ## checking gradient chk(c(numDeriv::grad(mm01$ll, coef(mm01))), c(mm01$sc(coef(mm01)))) chk(c(numDeriv::grad(mm02$ll, coef(mm02))), c(mm02$sc(coef(mm02)))) ##### SECOND SCENARIO: COVARIATE DEPENDENT LAMBDA ##### set.seed(290875) ll <- numeric(50) X <- matrix(runif(N * p), ncol = p) m1 <- 1 + X %*% c(2, 1, 1) m2 <- 1 + X %*% c(1, 2, 1) lb <- (off <- 0.5) + X %*% (cf <- c(0, 2, 0)) d <- data.frame(X) Y <- matrix(NA, nrow = N, ncol = 2) colnames(Y) <- c("Y1", "Y2") cr <- numeric(N) for (i in 1:N) { L <- diag(2) L[2,1] <- lb[i] Si <- solve(L) %*% t(solve(L)) cr[i] <- cov2cor(Si)[2,1] Y[i,] <- rmvnorm(1, mean = c(m1[i], m2[i]), sigma = Si) } ##### only BoxCox margins: ##### d <- cbind(d, Y) b1 <- as.mlt(Lm(Y1 ~ X1 + X2 + X3, data = d)) b2 <- as.mlt(Lm(Y2 ~ X1 + X2 + X3, data = d)) ## constant correlations. expect identical logliks and lambda parameters mm01 <- mmlt(b1, b2, formula = ~ 1, data = d) mm02 <- mmlt(b2, b1, formula = ~ 1, data = d) chk(logLik(mm01), logLik(mm02)) ## checking gradients chk(c(numDeriv::grad(mm01$ll, mm02$par)),c(mm01$sc(mm02$par))) ## x-dependent correlations. expect slightly different logliks when ## conditional = TRUE mm1 <- mmlt(b1, b2, formula = ~ X1 + X2 + X3, data = d, conditional = TRUE) mm2 <- mmlt(b2, b1, formula = ~ X1 + X2 + X3, data = d, conditional = TRUE) logLik(mm1) logLik(mm2) ### BUT: identical models when conditional = FALSE mm1 <- mmlt(b1, b2, formula = ~ X1 + X2 + X3, data = d, conditional = FALSE) mm2 <- mmlt(b2, b1, formula = ~ X1 + X2 + X3, data = d, conditional = FALSE) chk(logLik(mm1), logLik(mm2)) ## predicting marginal distributions and comparing across models with constant lambda x <- 0:4 / 4 nd <- expand.grid(X1 = x, X2 = x, X3 = x) chk(predict(mm01, newdata = nd[1:5,], q = -2:2, margins = 1, type = "distribution"), predict(mm02, newdata = nd[1:5,], q = -2:2, margins = 2, type = "distribution")) ## predicting marginal distributions and comparing across models with ## x-dependent lambda and conditional = FALSE chk(predict(mm1, newdata = nd[1:5,], q = -2:2, margins = 1, type = "distribution"), predict(mm2, newdata = nd[1:5,], q = -2:2, margins = 2, type = "distribution")) ## expect correlations to be the same for the model with constant lambdas chk(c(coef(mm01, newdata = nd[1:5,], type = "Cor")), c(coef(mm02, newdata = nd[1:5,], type = "Cor"))) ## correlations for models with x-dependent lambda chk(c(coef(mm1, newdata = nd[1:5,], type = "Cor")), c(coef(mm2, newdata = nd[1:5,], type = "Cor"))) ##### mix of BoxCox and Colr margins: ##### d$Y1 <- (d$Y1 - min(d$Y1))/(max(d$Y1) - min(d$Y1)) b1 <- as.mlt(Colr(Y1 ~ X1 + X2 + X3, data = d, order = OR)) b2 <- as.mlt(Lm(Y2 ~ X1 + X2 + X3, data = d)) mm01 <- mmlt(b1, b2, formula = ~ 1, data = d) mm02 <- mmlt(b2, b1, formula = ~ 1, data = d) chk(logLik(mm01), logLik(mm02)) coef(b1) coef(b2) coef(mm01) coef(mm02) # remember that: lb <- (off <- 0.5) + X %*% (cf <- c(0, 2, 0)) ## checking gradient chk(c(numDeriv::grad(mm01$ll, coef(mm01))),c(mm01$sc(coef(mm01)))) chk(c(numDeriv::grad(mm02$ll, coef(mm02))),c(mm02$sc(coef(mm02)))) ## covariate-dependent Lambda mm1 <- mmlt(b1, b2, formula = ~ X1 + X2 + X3, data = d) mm2 <- mmlt(b2, b1, formula = ~ X1 + X2 + X3, data = d) logLik(mm1) logLik(mm2) coef(b1) coef(b2) coef(mm1) coef(mm2) # remember that: lb <- (off <- 0.5) + X %*% (cf <- c(0, 2, 0)) ## checking gradient for diag = TRUE chk(c(numDeriv::grad(mm1$ll, coef(mm1))),c(mm1$sc(coef(mm1)))) chk(c(numDeriv::grad(mm2$ll, coef(mm2))),c(mm2$sc(coef(mm2)))) ### very simple checks with marginal Lm models set.seed(290875) J <- 4 S <- cov2cor(tcrossprod(matrix(runif(J * J), ncol = J))) x <- matrix(runif(N*2), ncol = 2) y <- x %*% matrix(c(1, -1, -.5, .5, -.2, .2, .3, -.3), nrow = 2) + rmvnorm(N, sigma = S) d <- data.frame(y = y, x = x) m1 <- Lm(y.1 ~ x.1 + x.2, data = d) m2 <- Lm(y.2 ~ x.1 + x.2, data = d) m3 <- Lm(y.3 ~ x.1 + x.2, data = d) m4 <- Lm(y.4 ~ x.1 + x.2, data = d) ## simple formula mc01 <- mmlt(m1, m2, m3, m4, formula = ~ 1, data = d, conditional = FALSE) cf <- coef(mc01) vr <- diag(vcov(mc01)) i <- grep("x", names(cf)) ### same results ret <- cbind(c(coef(m1), coef(m2), coef(m3), coef(m4)), cf[i], c(diag(vcov(m1)), diag(vcov(m2)), diag(vcov(m3)), diag(vcov(m4))), vr[i]) ret vc <- vcov(mc01) i <- grep("x.1", colnames(vc)) vc[i,i] summary(g1 <- glht(mmm(m1 = as.mlt(m1), m2 = as.mlt(m2), m3 = as.mlt(m3), m4 = as.mlt(m4)), mlf("x.1 = 0"))) summary(g2 <- glht(mc01, c("y.1.x.1 = 0", "y.2.x.1 = 0", "y.3.x.1 = 0", "y.4.x.1 = 0"))) vcov(g1) vcov(g2) #### check density Shat <- as.array(coef(mc01, type = "Cor"))[,,1] int <- cf[paste("y", 1:J, "(Intercept)", sep = ".")] fct <- cf[paste("y", 1:J, "y", 1:J, sep = ".")] d1 <- sapply(1:N, function(i) dmvnorm(int + fct * y[i,], mean = x[i,,drop = FALSE] %*% matrix(ret[,1], nrow = 2), sigma = Shat, log = TRUE)) d2 <- predict(mc01, newdata = d, type = "density", log = TRUE) chk(c(d1), c(d2)) chk(c(logLik(mmlt(m1, m2, m3, m4, formula = ~ 1, data = d))), c(logLik(mc01))) chk(c(logLik(mc01)), sum(d2)) ### check if newdata works in logLik chk(logLik(mc01), logLik(mc01, newdata = d)) ### check user interface dgp <- function(N = 100, J = 5, lambda = 0.5773503) { Jp <- J * (J - 1) / 2 X <- c(lambda, rep(0, Jp - 1)) L <- ltMatrices(X) L <- standardize(invchol = L) Z <- matrix(rnorm(N * J), ncol = N) ret <- solve(L, Z) ret <- as.data.frame(t(ret)) colnames(ret) <- paste0("Y", 1:J) ret } N <- 100 J <- 5 set.seed(290875) Y <- dgp(N = N, J = J) m0 <- lapply(colnames(Y)[1:J], function(v) { fm <- as.formula(paste(v, " ~ 1")) BoxCox(fm, data = Y, order = OR) }) TF <- c(TRUE, FALSE) args <- expand.grid(scale = TF, domargins = TF, dofit = TF, theta = TF, fixed = TF, conditional = TF) args <- subset(args, !(conditional & !domargins)) m0$data <- Y m0$conditional <- TRUE m1 <- do.call("mmlt", m0) theta <- coef(m1) CR <- coef(m1, type = "Cor") fx <- c("Y5.Y3.(Intercept)" = 0, "Y5.Y4.(Intercept)" = 0) for (i in 1:nrow(args)) { print(i) m0$scale <- args$scale[i] m0$dofit <- args$dofit[i] m0$domargins <- args$domargins[i] m0$conditional <- args$conditional[i] m0$theta <- NULL if (args$theta[i]) m0$theta <- theta m0$fixed <- NULL if (args$fixed[i]) m0$fixed <- fx m1 <- try(do.call("mmlt", m0)) if (!inherits(m1, "try-error")) { print(logLik(m1)) print(isTRUE(chk(coef(m1, type = "Cor"), CR))) } } ### names J <- 5 N <- 50 df <- as.data.frame(matrix(rnorm(J * N), ncol = J)) colnames(df) <- paste0("X", 1:J) mltargs <- lapply(1:ncol(df), function(j) { fm <- as.formula(paste0("X", j, "~1")) BoxCox(fm, data = df, order = OR) }) mltargs$data <- df fx <- c("X3.X1.(Intercept)" = 0, "X4.X1.(Intercept)" = 0, "X5.X1.(Intercept)" = 0, "X3.X2.(Intercept)" = 0, "X4.X2.(Intercept)" = 0, "X5.X2.(Intercept)" = 0, "X5.X4.(Intercept)" = 0) tmp <- do.call("mmlt", c(mltargs, list(fixed = fx))) mltargs$conditional <- TRUE tmp <- do.call("mmlt", c(mltargs, list(fixed = fx))) cf <- coef(tmp) cf <- cf[grep("Intercept", names(cf))] names(cf) <- substr(names(cf), 1, 5) chk(unclass(coef(tmp, type = "Lambda"))[names(cf),], cf) ### check discrete models J <- 2 N <- 100 S <- cov2cor(tcrossprod(matrix(runif(J * J), ncol = J))) y <- rmvnorm(N, sigma = S) u <- as.data.frame(plogis(y)) x <- runif(N) d <- cbind(u, x) un <- colnames(d)[1:J] d[1:J] <- lapply(d[1:J], function(x) cut(x, breaks = c(-Inf, quantile(x, prob = 1:3 / 4), Inf), ordered_result = TRUE)) m <- lapply(un, function(i) Polr(as.formula(paste(i, "~ x")), data = d, method = "probit")) m$data <- d m$formula <- ~ 1 m$args <- list(seed = 1, M = 100) mm <- do.call("mmlt", m) L <- as.array(coef(mm, type = "Lambda"))[,,1] chk(as.array(coef(mm, type = "Lambdainv"))[,,1], solve(L)) chk(as.array(coef(mm, type = "Sigma"))[,,1], tcrossprod(solve(L))) chk(as.array(coef(mm, type = "Cor"))[,,1], cov2cor(tcrossprod(solve(L)))) chk(colSums(estfun(mm)), -colSums(mm$score(coef(mm, type = "all")))) for (j in 1:J) m[[j]]$todistr$name <- "CarlFriedrich" mmN <- do.call("mmlt", m) chk(logLik(mm), logLik(mmN)) chk(coef(mm), coef(mmN)) chk(diag(vcov(mm)), diag(vcov(mmN))) chk(as.array(coef(mm, type = "Lambda"))[,,1], as.array(coef(mmN, type = "Lambda"))[,,1]) chk(as.array(coef(mm, type = "Lambdainv"))[,,1], as.array(coef(mmN, type = "Lambdainv"))[,,1]) chk(as.array(coef(mm, type = "Sigma"))[,,1], as.array(coef(mmN, type = "Sigma"))[,,1]) chk(as.array(coef(mm, type = "Spearman"))[,,1], as.array(coef(mmN, type = "Spearman"))[,,1]) ### order independence, starting with 1.1-0, depending on ### mvtnorm 1.3-0 N <- 100 y <- gl(3, N, ordered = TRUE) x <- rnorm(length(y)) w <- rnorm(length(y)) mx <- BoxCox(x ~ 1) mw <- BoxCox(w ~ 1) my <- Polr(y ~ 1) mxwy <- mmlt(mx, mw, my, formula = ~ 1) cfxwy <- coef(mxwy) Sxwy <- coef(mxwy, type = "Sigma") p <- dimnames(Sxwy)[[2L]] llxwy <- logLik(mxwy) gn <- numDeriv::grad(mxwy$ll, cfxwy) ga <- colSums(mxwy$score(cfxwy)) chk(gn, ga, tol = 1e-2) ### Fedora noLD problems mwxy <- mmlt(mw, mx, my, formula = ~ 1) cfwxy <- coef(mwxy) Swxy <- coef(mwxy, type = "Sigma")[,p] llwxy <- logLik(mwxy) nm <- names(cfwxy) nc <- nm[nm %in% names(cfxwy)] chk(cfxwy[nc], cfwxy[nc], tol = 1e-2) chk(Swxy, Sxwy, tol = 1e-2) chk(llwxy, llxwy, tol = 1e-2) gn <- numDeriv::grad(mwxy$ll, cfwxy) ga <- colSums(mwxy$score(cfwxy)) chk(gn, ga, tol = 1e-2) myxw <- mmlt(my, mx, mw, formula = ~ 1) cfyxw <- coef(myxw) Syxw <- coef(myxw, type = "Sigma")[,p] llyxw <- logLik(myxw) nm <- names(cfyxw) nc <- nm[nm %in% names(cfxwy)] chk(cfxwy[nc], cfyxw[nc], tol = 1e-2) chk(Syxw, Sxwy, tol = 1e-2) chk(llyxw, llxwy, tol = 1e-2) gn <- numDeriv::grad(myxw$ll, cfyxw) ga <- colSums(myxw$score(cfyxw)) chk(gn, ga, tol = 1e-2)