R Under development (unstable) (2024-09-25 r87194 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("tram") Loading required package: mlt Loading required package: basefun Loading required package: variables Loading required package: mvtnorm > library("survival") > library("sandwich") > library("numDeriv") > library("mvtnorm") > > ### check mmlt for wild model combinations and weights > > set.seed(290875) > > chk <- function(x, y, tol = 1e-3) stopifnot(all.equal(x, y, tol = tol)) > > N <- 100 > J <- 3 > > ### weights > w <- as.double(sample(0:5, size = N, replace = TRUE)) > ### X1, X2, X3 correlated > z <- matrix(rnorm(N * J), nrow = J) > L <- ltMatrices(runif(J * (J - 1) / 2)) > y <- t(solve(standardize(L), z)) > ### uncorrelated ordered > x <- sample(gl(5, N / 5, ordered = TRUE)) > ### X3 right censored > e <- sample(c(TRUE, FALSE), size = N, replace = TRUE) > X3 <- exp(y[,3]) > X3 <- Surv(X3, event = e) > d <- data.frame(y[,1:2], X3, x, e) > dw <- d[rep(1:nrow(d), w),,drop = FALSE] > idx <- sample(1:N, size = N / 2) > > ### global options (speed-up estimation) > M <- 200 > args <- list(type = "ghalton", M = M) > op <- mltoptim() ### no hessian > > ### marginal models (use Lm to reduce number of parameters) > m1 <- Lm(X1 ~ 1, data = d) > m2 <- Lm(X2 ~ 1, data = d) > m3 <- Lm(X3 ~ 1, data = d) > m4 <- Polr(x ~ 1, data = d, method = "probit") > > ### joint distribution of X1, X2 (continuous), X3 (continuous and > ### right-censored) and x (discrete) > m <- mmlt(m1, m2, m3, m4, data = d, args = args, optim = op) Warning message: In .MCw(J = dJ, M = args$M, seed = args$seed, args$type) : package qrng is not available for ghalton(); using type = MC > l1 <- logLik(m) > ## check gradient > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm), coef(m)) > chk(s2, unname(s1)) > L1 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3", "x")) > > ## change order of variables > m <- mmlt(m2, m4, m1, m3, data = d, args = args, optim = op) Warning message: In .MCw(J = dJ, M = args$M, seed = args$seed, args$type) : package qrng is not available for ghalton(); using type = MC > l2 <- logLik(m) > L2 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3", "x")) > > ## use less evaluation points for normal integrals > m <- mmlt(m2, m4, m1, m3, data = d, optim = op, + args = list(type = "ghalton", M = 100)) Warning message: In .MCw(J = dJ, M = args$M, seed = args$seed, args$type) : package qrng is not available for ghalton(); using type = MC > l3 <- logLik(m) > L3 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3", "x")) > ## check near identity: This can't be exact, because the evaluation points > ## correspond to different dimensions in the different calls > chk(l2, l1) > chk(l3, l1) > chk(L2, L1, tol = 1e-2) > chk(L3, L1, tol = 1e-2) > > ### continuous and ordered only > m <- mmlt(m1, m2, m4, data = d, optim = op) > l1 <- logLik(m) > l1a <- logLik(m, newdata = d[idx,]) + logLik(m, newdata = d[-idx,]) > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm), coef(m)) > chk(s2, unname(s1)) > L1 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m2, m1, m4, data = d, optim = op) > l2 <- logLik(m) > l2a <- logLik(m, newdata = d[idx,]) + logLik(m, newdata = d[-idx,]) > L2 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m4, m2, m1, data = d, optim = op) > l3 <- logLik(m) > l3a <- logLik(m, newdata = d[idx,]) + logLik(m, newdata = d[-idx,]) > L3 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > chk(l2, l1) > chk(l3, l1) > chk(L2, L1) > chk(L3, L1) > > ### weighted observations (1) > m1 <- Lm(X1 ~ 1, data = dw) > m2 <- Lm(X2 ~ 1, data = dw) > m3 <- Lm(X3 ~ 1, data = dw) > m4 <- Polr(x ~ 1, data = dw, method = "probit") > > m <- mmlt(m1, m2, m4, data = dw, optim = op) > l1 <- logLik(m) > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm), coef(m)) > chk(s2, unname(s1)) > L1 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m2, m1, m4, data = dw, optim = op) > l2 <- logLik(m) > L2 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m4, m2, m1, data = dw, optim = op) > l3 <- logLik(m) > L3 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > ### check if order matters > chk(l2, l1) > chk(l3, l1) > chk(L2, L1) > chk(L3, L1) > > ### weighted observations (2) via weights > m1 <- Lm(X1 ~ 1, data = d, weights = w) > m2 <- Lm(X2 ~ 1, data = d, weights = w) > m3 <- Lm(X3 ~ 1, data = d, weights = w) > m4 <- Polr(x ~ 1, data = d, method = "probit", weights = w) > > m <- mmlt(m1, m2, m4, data = d, optim = op) > l1w <- logLik(m) > l1wa <- logLik(m, newdata = d[idx,], w = w[idx]) + + logLik(m, newdata = d[-idx,], w = w[-idx]) > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm, w = w), coef(m)) > chk(s2, unname(s1)) > L1w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m2, m1, m4, data = d, optim = op) > l2w <- logLik(m) > l2wa <- logLik(m, newdata = d[idx,], w = w[idx]) + + logLik(m, newdata = d[-idx,], w = w[-idx]) > L2w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > m <- mmlt(m4, m2, m1, data = dw, optim = op) > l3w <- logLik(m) > l3wa <- logLik(m, newdata = d[idx,], w = w[idx]) + + logLik(m, newdata = d[-idx,], w = w[-idx]) > L3w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "x")) > > ## check if order matters > chk(l2w, l1w) > chk(l3w, l1w) > chk(L2w, L1w) > chk(L3w, L1w) > > ## check if weights and expanded data give the same results > chk(l1w, l1wa) > chk(l2w, l2wa) > chk(l3w, l3wa) > chk(l1w, l1) > chk(l2w, l2) > chk(l3w, l3) > chk(L1w, L1) > chk(L2w, L2) > chk(L3w, L2) > > ### continuous and some right-censored observations > ### with expanded data > m1 <- Lm(X1 ~ 1, data = dw) > m2 <- Lm(X2 ~ 1, data = dw) > m3 <- Lm(X3 ~ 1, data = dw) > m4 <- Polr(x ~ 1, data = dw, method = "probit") > > m <- mmlt(m1, m2, m3, data = dw, optim = op) > l1 <- logLik(m) > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm), coef(m)) > chk(s2, unname(s1)) > L1 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > > m <- mmlt(m2, m1, m3, data = dw, optim = op) > l2 <- logLik(m) > L2 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > > m <- mmlt(m3, m2, m1, data = dw, optim = op) > l3 <- logLik(m) > L3 <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > ## check if order matters > chk(l2, l1) > chk(l3, l1) > chk(L2, L1) > chk(L3, L1) > > ### continuous and some right-censored with weights > m1 <- Lm(X1 ~ 1, data = d, weights = w) > m2 <- Lm(X2 ~ 1, data = d, weights = w) > m3 <- Lm(X3 ~ 1, data = d, weights = w) > m4 <- Polr(x ~ 1, data = d, method = "probit", weights = w) > > m <- mmlt(m1, m2, m3, data = d, optim = op) > l1w <- logLik(m) > s1 <- -colSums(estfun(m)) > s2 <- grad(function(parm) logLik(m, parm = parm, w = w), coef(m)) > chk(s2, unname(s1)) > L1w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > > m <- mmlt(m2, m1, m3, data = d, optim = op) > l2w <- logLik(m) > L2w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > > m <- mmlt(m3, m2, m1, data = d, optim = op) > l3w <- logLik(m) > L3w <- aperm(coef(m, type = "Lambda"), perm = c("X1", "X2", "X3")) > > ## check if order matters > chk(l2w, l1w) > chk(l3w, l1w) > chk(L2w, L1w) > chk(L3w, L1w) > > ## check if weights and expanded data give the same results > chk(l1w, l1) > chk(l2w, l2) > chk(l3w, l3) > chk(L1w, L1) > chk(L2w, L2) > chk(L3w, L2) > > ### simulation from fitted / unfitted models > data("iris") > > m1 <- BoxCox(Sepal.Length ~ Species, data = iris) > m2 <- BoxCox(Petal.Length ~ Species, data = iris) > > ### fit model > m <- mmlt(m1, m2, data = iris) > cf <- coef(m) > > ### resample data > s1 <- as.data.frame(simulate(m, newdata = iris, seed = 290875)) > > ### change coeffcient (to zero correlation) > cf[length(cf)] <- 0 > coef(m) <- cf > > s2 <- as.data.frame(simulate(m, newdata = iris, seed = 290875)) > > ### expect _different_ results > stopifnot(!isTRUE(all.equal(s1, s2))) > > ### set-up model shell > m0 <- mmlt(m1, m2, data = iris, theta = cf, dofit = FALSE) > > s3 <- as.data.frame(simulate(m, newdata = iris, seed = 290875)) > ### these are identical > chk(s2, s3) > > proc.time() user system elapsed 28.81 0.65 29.48