R Under development (unstable) (2024-11-27 r87386 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## -- Test utils & settings > source("test_util.R") > .run_test <- identical(Sys.getenv("NOT_CRAN"), "true") > oldopt <- options(digits = 4) > set.seed(100) > > library("tramME") Loading required package: tram Loading required package: mlt Loading required package: basefun Loading required package: variables Loading required package: mvtnorm > data("sleepstudy", package = "lme4") > > # -- newdata w/ response > fit <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy) > pr1 <- predict(fit, newdata = sleepstudy[1:20, ], type = "trafo") > pr2 <- predict(fit, type = "trafo")[1:20] > chkid(pr1, pr2) > > ## -- newdata w/o response > nd <- sleepstudy > nd[["Reaction"]] <- NULL > pr1 <- predict(fit, newdata = nd, ranef = ranef(fit, raw = TRUE), type = "trafo", K = 100) > chkid(unname(dim(pr1)), c(100L, nrow(sleepstudy))) > chkerr(pr2 <- predict(fit, newdata = nd, K = 100)) > > ## -- check "zero" option of ranef > nd <- sleepstudy[c(4, 14, 24), ] > pr1 <- predict(fit, newdata = nd, ranef = rep(0, 6), q = c(300, 320), type = "distribution") > pr2 <- predict(fit, newdata = nd, ranef = "zero", q = c(300, 320), type = "distribution") > chkid(pr1, pr2) > > ## -- various formatting of ranef > pr1 <- predict(fit, ranef = ranef(fit, raw = TRUE), type = "quantile", prob = 0.5) > ## ... also with formatted ranefs > pr2 <- predict(fit, ranef = ranef(fit), type = "quantile", prob = 0.5) > chkid(pr1, pr2) > > ## -- compare w/ lmer > library("lme4") Loading required package: Matrix > lm1 <- LmME(Reaction ~ Days + (Days || Subject), data = sleepstudy) > lm2 <- lmer(Reaction ~ Days + (Days || Subject), data = sleepstudy, REML = FALSE) > chkeq(predict(lm1, type = "lp") * sigma(lm1) + coef(lm1, as.lm = TRUE)[1], + fitted(lm2), tol = 1e-6) > > ## -- w/ Surv response & w/o shift terms > library("survival") > fit2 <- SurvregME(Surv(time, status) | rx ~ 1 + (1 | litter), data = rats, + dist = "rayleigh") > pdf(file = NULL) > pl <- plot(fit2, newdata = rats[1:2, ], ranef = -1, type = "survivor", K = 100, + col = 1) > dev.off() null device 1 > chkeq(dim(pl), c(100L, 2L), check.attributes = FALSE) > > ## -- compare with tram > m1 <- Lm(dist ~ speed, data = cars, fixed = c(speed = 0.3)) > m2 <- LmME(dist ~ speed, data = cars, fixed = c(speed = 0.3)) > stopifnot(m2$opt$convergence == 0) > chkeq(logLik(m1), logLik(m2), check.attributes = FALSE) > nd <- cars > nd[["dist"]] <- NULL > pr1 <- predict(as.mlt(m1), newdata = nd, type = "trafo", K = 200) > pr2 <- predict(m2, newdata = nd, type = "trafo", K = 200) > chkeq(pr1, pr2, tol = 1e-6) > > data("neck_pain", package = "ordinalCont") > m1 <- ColrME(vas ~ laser * time, data = neck_pain, bounds = c(0, 1), support = c(0, 1)) > m2 <- Colr(vas ~ laser * time, data = neck_pain, bounds = c(0, 1), support = c(0, 1)) > stopifnot(m2$opt$convergence == 0) > chkeq(logLik(m1), logLik(m2), check.attributes = FALSE) > nd <- neck_pain[1, ] > nd$vas <- NULL > pr1 <- predict(m1, newdata = nd, K = 5, type = "distribution") > pr2 <- predict(as.mlt(m2), newdata = nd, K = 5, type = "distribution") > chkeq(pr1, pr2, tol = 1e-5) > > ## -- edge cases > mod <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy, nofit = TRUE) > pr <- predict(mod, ranef = "zero", type = "trafo") > stopifnot(all(is.na(pr))) > coef(mod) <- c(-5, 2, 0.05) > pr <- predict(mod, ranef = "zero", type = "trafo") > stopifnot(all(!is.na(pr))) > chkerr(pr <- predict(mod), "supply random effects") > > ## -- check random effects > m <- CoxphME(Surv(time, status) ~ rx + (1 | litter), data = rats, log_first = TRUE) > nd <- rats[1, ] > pr <- predict(m, newdata = nd, type = "trafo", ranef = "zero", K = 5) > pr2 <- predict(m, newdata = nd, type = "trafo", ranef = 1, K = 5) > chkeq(pr + 1, pr2) > m <- LmME(Reaction ~ Days + (1 | Subject), data = sleepstudy) > nd <- sleepstudy[10, ] > nd$Reaction <- NULL > pr <- predict(m, newdata = nd, type = "trafo", ranef = "zero", K = 5) > pr2 <- predict(m, newdata = nd, type = "trafo", ranef = 2, K = 5) > chkeq(pr - 2, pr2) > > ## FIXME Check warning messages > ## oc <- optim_control(ok_warnings = FALSE) > ## chkwarn(m <- update(m, control = oc), wm = "NA/NaN") > ## TODO: also check in the precious m the lack of warning messages > > ## --- w/ smooth terms > ## lp > library("mgcv") Loading required package: nlme Attaching package: 'nlme' The following object is masked from 'package:lme4': lmList The following object is masked from 'package:mlt': coef<- This is mgcv 1.9-1. For overview type 'help("mgcv-package")'. > fit_sm1 <- LmME(Reaction ~ s(Days) + (1 | Subject), data = sleepstudy) > fit_sm2 <- gam(Reaction ~ s(Days) + s(Subject, bs = "re"), data = sleepstudy, method = "ML") > ## fitted REs > pr1a <- (predict(fit_sm1) - coef(fit_sm1, with_baseline = TRUE)[1]) * sigma(fit_sm1) > pr2 <- predict(fit_sm2) > chkeq(pr1a, c(pr2), tol = 1e-5) > ## zero REs > pr1b <- (predict(fit_sm1, ranef = "zero") - coef(fit_sm1, with_baseline = TRUE)[1]) * sigma(fit_sm1) > pr2 <- predict(fit_sm2, exclude = "s(Subject)") > chkeq(pr1b, c(pr2), tol = 1e-5) > ## new data > nd <- sleepstudy[1:10, ] > pr1c <- (predict(fit_sm1, newdata = nd) - coef(fit_sm1, with_baseline = TRUE)[1]) * sigma(fit_sm1) > chkeq(pr1a[1:10], pr1c) > pr2 <- predict(fit_sm2, newdata = nd) > chkeq(pr1c, c(pr2), tol = 1e-5) > > ## density > data("mcycle", package = "MASS") > m <- LmME(accel ~ s(times, bs = "cr"), data = mcycle) > nd <- data.frame(times = seq(5, 30, by = 5)) > qs <- seq(-134, 75, length.out = 50) > lp <- predict(m, nd, type = "lp") > lp2 <- (lp - coef(m, with_baseline = TRUE)[1]) * sigma(m) > pr1 <- predict(m, nd, type = "density", q = qs) > pr2 <- sapply(lp2, function(x) dnorm(qs, mean = x, sd = sigma(m))) > chkeq(pr1, pr2, check.attributes = FALSE) > > ## a complicated plot > mod_su <- SurvregME(Surv(time, status) | celltype ~ age + s(karno, by = trt), + data = veteran, dist = "loglogistic") > pdf(file = NULL) > plot(mod_su, type = "density") > dev.off() null device 1 > > summarize_tests() ========================== Number of failed tests: 0 ========================== > > options(oldopt) > > proc.time() user system elapsed 4.93 0.32 5.25