R Under development (unstable) (2024-11-27 r87386 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## -- Test utils & settings > source("test_util.R") > .run_test <- identical(Sys.getenv("NOT_CRAN"), "true") > oldopt <- options(digits = 4) > set.seed(100) > > library("tramME") Loading required package: tram Loading required package: mlt Loading required package: basefun Loading required package: variables Loading required package: mvtnorm > library("survival") > data("sleepstudy", package = "lme4") > set.seed(100) > gamdat <- mgcv::gamSim(6, n = 500, scale = 2, verbose = FALSE) Gu & Wahba 4 term additive model > data("mcycle", package = "MASS") > > ## -- Set and get parameters > mod_lm <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy, nofit = TRUE) > chkerr(coef(mod_lm) <- c(1, 1)) > coef(mod_lm) <- c(1, -1, 0.5) ## doesn't raise an error until varcov is defined > vc <- varcov(mod_lm) > vc[[1]][] <- diag(2) > chkerr(varcov(mod_lm) <- vc, em = "constraints") > coef(mod_lm) <- c(-1, 0.5, 1) ## no error > varcov(mod_lm) <- vc > chkeq(varcov(mod_lm)$Subject, diag(2), check.attributes = FALSE) > vc[[1]][] <- matrix(c(1, 0.2, 0.6, 2), ncol = 2) > chkerr(varcov(mod_lm) <- vc) > > mod_gm <- LmME(y ~ s(x0)+ x1 + s(x2) + (1|fac), data = gamdat, nofit = TRUE) > vc <- varcov(mod_gm) > chkid(names(vc), "fac") > vc <- varcov(mod_gm, full = TRUE) > chkid(names(vc), c("fac", "s(x0)", "s(x2)")) > cf <- coef(mod_gm, with_baseline = TRUE) > chkid(length(cf), 5L) ## NOTE: 2 baseline + 1 shift + 2 smooth > > ## -- Log-likelihood > mod_lm <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy, nofit = TRUE) > stopifnot(is.na(logLik(mod_lm))) > chkerr(logLik(mod_lm, param = list(beta = c(-5, -1, 2), theta = c(0, 0, 0))), + em = "constraints") > mod_lm2 <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy) > ss2 <- sleepstudy[sample(1:nrow(sleepstudy)), ] ## Just reshuffle > chkeq(logLik(mod_lm2), logLik(mod_lm2, newdata = ss2)) > ## NOTE: sometimes there are very small numerical differences > ## (it might come from the numerical integration) > > ## -- vcov > stopifnot(all(is.na(vcov(mod_lm)))) > chkid(dim(vcov(mod_lm, pargroup = "fixef")), c(3L, 3L)) > chkid(dim(vcov(mod_lm, pargroup = "ranef")), c(3L, 3L)) > chkid(dim(vcov(mod_lm, pargroup = "shift")), c(1L, 1L)) > mod_lm <- update(mod_lm, fixed = c("Days" = 0.5)) > chkeq(dim(vcov(mod_lm, pargroup = "shift")), c(0L, 0L)) > chkid(rownames(vcov(mod_lm, pargroup = "fixef")), c("(Intercept)", "Reaction")) > > if (!.run_test) { + mod_sr <- SurvregME(Surv(time, status) ~ rx, data = rats) + vc1 <- vcov(mod_sr, method = "numDeriv") + vc2 <- vcov(mod_sr, method = "analytical") ## NOTE: default in this specific model + vc3 <- vcov(mod_sr, method = "optimHess") + chkeq(vc1, vc2) + ## NOTE: w/ optimHess, it's slightly different + chkeq(vc1, vc3, tol = sqrt(.Machine$double.eps), chkdiff = TRUE) + } > > mod_gm <- LmME(y ~ s(x0)+ x1 + s(x2) + (1|fac), data = gamdat) > chkid(dim(vcov(mod_gm, pargroup = "smooth")), c(4L, 4L)) > > ## -- variable names > mod_sr <- SurvregME(Surv(time, status) ~ rx, data = rats, nofit = TRUE) > chkid(variable.names(mod_sr, "grouping"), NULL) > chkid(variable.names(mod_sr, "interacting"), NULL) > chkid(variable.names(mod_sr, "smooth"), NULL) > chkid(variable.names(mod_sr, "response"), "Surv(time, status)") > mod_sr2 <- SurvregME(Surv(time, status) ~ rx + (1 | litter/rx), data = rats, + nofit = TRUE) > chkid(variable.names(mod_sr2, "grouping"), c("rx", "litter")) > > chkid(variable.names(mod_gm, "smooth"), c("x0", "x2")) > chkid(variable.names(mod_gm), c("y", "x1", "x0", "x2", "fac")) > ## NOTE: linear shift term comes first (x1) > > ## -- VarCorr > chkid(length(VarCorr(mod_sr)), 0L) > chkid(length(VarCorr(mod_sr2)), 2L) > chkid(length(VarCorr(mod_gm)), 1L) > > ## -- confint > ci <- confint(mod_sr, pargroup = "ranef", type = "profile", estimate = TRUE) > chkid(dim(ci), c(0L, 3L)) > ci <- confint(mod_sr2) > chkid(dim(ci), c(5L, 2L)) > stopifnot(all(is.na(ci))) > ci <- confint(mod_lm, "foo") > chkid(dim(ci), c(0L, 2L)) > ci <- confint(mod_lm, parm = "Subject", pmatch = TRUE) > chkid(dim(ci), c(3L, 2L)) > > m03 <- LmME(dist ~ speed, data = cars) > m04 <- Lm(dist ~ speed, data = cars) > chkeq(confint(m03, pargroup = "shift"), confint(m04), tol = 1e-5, + check.attributes = FALSE) > > ## -- random effects > mod_lm <- update(mod_lm, fixed = NULL) > stopifnot(all(is.na(ranef(mod_lm)[[1]]))) > pr <- list(beta = coef(mod_lm2, fixed = FALSE, with_baseline = TRUE), + theta = varcov(mod_lm2, as.theta = TRUE)) > re1 <- ranef(mod_lm, param = pr, condVar = TRUE) > re2 <- ranef(mod_lm2, condVar = TRUE) > chkeq(re1, re2) > chkid(ranef(mod_sr), NULL) > > nd <- sleepstudy[1:20, ] > re1 <- ranef(mod_lm2, newdata = nd) > re2 <- ranef(mod_lm2, condVar = FALSE) > chkeq(re1$Subject, re2$Subject[1:2, ]) > > re1 <- ranef(mod_gm, raw = TRUE) > re2 <- ranef(mod_gm, condVar = TRUE) > chkid(re2$fac[[1]], re1[1:4]) > chkid(dim(attr(re2$fac, "condVar")), c(4L, 1L)) > > ## fixing smooth terms, or parts > mod_gm2 <- LmME(accel ~ s(times), data = mcycle) > re1 <- ranef(mod_gm2, raw = TRUE) > re2 <- ranef(mod_gm2, raw = TRUE, newdata = mcycle[1:2, ]) ## fix_smooth is on by default > chkeq(re1, re2) > pr <- list(beta = coef(mod_gm2, fixed = FALSE, with_baseline = TRUE), + theta = varcov(mod_gm2, as.theta = TRUE, full = TRUE)) > pr$gamma <- mod_gm2$param$gamma[1] > re3 <- ranef(mod_gm2, param = pr, raw = TRUE) > chkeq(re1, re3) > > pr <- list(beta = coef(mod_gm, fixed = FALSE, with_baseline = TRUE), + theta = varcov(mod_gm, as.theta = TRUE, full = TRUE)) > pr$gamma <- mod_gm$param$gamma[1] > re <- ranef(mod_gm, param = pr, condVar = TRUE, fix_smooth = TRUE) > chkid(is.na(attr(re$fac, "condVar")[[1]]), c(TRUE, rep(FALSE, 3))) > chkeq(re[[1]], ranef(mod_gm)[[1]], check.attributes = FALSE) > > ## -- Residuals > library("survival") > mod_sr <- SurvregME(Surv(time, status) ~ rx + (1 | litter), data = rats, + support = c(1, 90)) > stopifnot(mod_sr$opt$convergence == 0) > res1 <- resid(mod_sr, newdata = rats[1:30, ]) > res2 <- resid(mod_sr)[1:30] > ## NOTE: if the smaller sample doesn't contain complete groups, the returned > ## residuals will be different for that specific litter. This is because tramME > ## refits the random effects when it creates a new object (as it happens with > ## newdata) > chkeq(res1, res2) > > if (!.run_test) { + res1 <- resid(mod_gm, fix_smooth = TRUE, newdata = subset(gamdat, subset = fac == 1)) + res2 <- resid(mod_gm, fix_smooth = FALSE)[gamdat$fac == 1] + chkeq(res1, res2) + res1 <- resid(mod_gm, fix_smooth = FALSE, newdata = subset(gamdat, subset = fac == 1)) + chkeq(res1, res2, tol = sqrt(.Machine$double.eps), chkdiff = TRUE) + } > > mod_gm_bc <- BoxCoxME(y ~ s(x0)+ x1 + s(x2) + (1|fac), data = gamdat) > res1 <- resid(mod_gm_bc, fix_smooth = TRUE) > res2 <- resid(mod_gm_bc, fix_smooth = FALSE) > chkeq(res1, res2) > > pr <- list(gamma = mod_gm_bc$param$gamma[1:4]) > res1 <- resid(mod_gm_bc, param = pr, newdata = gamdat) > res2 <- resid(mod_gm_bc) > chkeq(res1, res2) > > ## -- FIXME: the tests below fail! Why? > ## probably because of the non-linearity of the log-likelihood > ## the derivative of the integrated ll != the derivative of the > ## penalized ll wrt the constant > ## pr <- list(gamma = mod_sr$param$gamma[1:2]) > ## res1 <- resid(mod_sr, param = pr, newdata = rats[1:4, ]) > ## res2 <- resid(mod_sr)[1:4] > > ## pr <- list(gamma = mod_sr$param$gamma) > ## res1 <- resid(mod_sr, param = pr) > ## res2 <- resid(mod_sr) > ## all.equal(res1, res2) > > ## m <- CoxphME(Surv(y, uncens) ~ trt + (1 | center), data = eortc, log_first = TRUE) > ## pr <- list(gamma = m$param$gamma[1:2]) > ## res1 <- resid(m, param = pr, newdata = eortc[c(1, 65), ]) > ## res2 <- resid(m)[c(1, 65)] > ## all.equal(res1, res2, tol = 1e-3) > ## -- > > m <- CoxphME(Surv(time, status) | celltype ~ trt + s(age) + s(karno), data = veteran, + log_first = TRUE) > res1 <- resid(m, fix_smooth = TRUE) > res2 <- resid(m, fix_smooth = FALSE) > chkeq(res1, res2, tol = 1e-5) > > ## -- print & summary > mod_sr3 <- SurvregME(Surv(time, status) | celltype ~ trt + age + karno, data = veteran, + dist = "loglogistic", fixed = c("age" = 0.02)) > stopifnot(mod_sr3$opt$convergence == 0) > mod_sr4 <- Survreg(Surv(time, status) | celltype ~ trt + age + karno, data = veteran, + dist = "loglogistic", fixed = c("age" = 0.02)) > chkeq(logLik(mod_sr3), logLik(mod_sr4), check.attributes = FALSE) > ss <- summary(mod_sr3) > stopifnot(grepl("Stratified", ss$name, fixed = TRUE)) > chkid(ss$fixed, c("age" = 0.02)) > ss <- summary(mod_lm) > stopifnot(grepl("Mixed-Effects", ss$name, fixed = TRUE)) > stopifnot(!ss$fitted) > ss <- summary(mod_lm2) > stopifnot(ss$fitted) > f <- dist ~ speed > mm <- LmME(f, data = cars) > chkid(summary(mm)$formula, f) > > ## -- subsets and na.actions > data("soup", package = "ordinal") > dat <- soup > dat$RESP[dat$AGEGROUP == "18-30"] <- NA > chkerr(mod_polr1 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD), + data = dat, nofit = TRUE, na.action = na.fail)) > mod_polr1 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD), + data = dat, nofit = TRUE, na.action = na.omit) > mod_polr2 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD), + data = soup, nofit = TRUE, na.action = na.fail, + subset = AGEGROUP != "18-30") > par <- list(beta = coef(mod_polr1, with_baseline = TRUE), + theta = varcov(mod_polr1, as.theta = TRUE)) > chkeq(logLik(mod_polr1, param = par), logLik(mod_polr2, param = par)) > > data("eortc", package = "coxme") > dat <- eortc > dat[dat$center <= 10, "center"] <- NA > mm1 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center), data = dat, + log_first = TRUE, nofit = TRUE) ## na.omit is the default > mm2 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center), data = eortc, + log_first = TRUE, subset = center > 10, nofit = TRUE) > par <- list(beta = coef(mm1, with_baseline = TRUE), + theta = varcov(mm1, as.theta = TRUE)) > chkeq(logLik(mm1, param = par), logLik(mm2, param = par)) > > ## -- weights & offsets > ## NOTE: many of this functionality is disabled at the moment > ## data("eortc", package = "coxme") > ## mod_cox1 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc, > ## log_first = TRUE, order = 10, nofit = TRUE, ## w/o do_update = TRUE! > ## support = c(1, 2500)) ## NOTE: set support explicitly to define same bases > ## stopifnot(is.null(weights(mod_cox1))) > ## we <- sample(c(1, 3), nrow(eortc), replace = TRUE) > ## chkerr(weights(mod_cox1) <- we, "do_update") > ## mod_cox1 <- update(mod_cox1, do_update = TRUE) > ## weights(mod_cox1) <- we > ## chkid(weights(mod_cox1), we) > ## mod_cox2 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc, > ## log_first = TRUE, order = 10, nofit = TRUE, weights = we, > ## support = c(1, 2500)) > ## par <- mod_cox2$tmb_obj$par > ## chkeq(logLik(mod_cox1, param = par), logLik(mod_cox2, param = par)) > ## dat <- eortc[rep(1:nrow(eortc), we), ] > ## mod_cox3 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = dat, > ## log_first = TRUE, order = 10, nofit = TRUE, > ## support = c(1, 2500)) > ## chkeq(logLik(mod_cox1, param = par), logLik(mod_cox3, param = par)) > > ## subsequently updated weights and offsets are carried forward... > ## mod_cox1 <- CoxphME(Surv(time, status) ~ rx + (1 | litter), data = rats, log_first = TRUE, > ## order = 12, nofit = TRUE, do_update = TRUE) > ## offset(mod_cox1) <- rep(0.1, nrow(rats)) > ## mod_cox2 <- update(mod_cox1, resid = TRUE) > ## chkid(offset(mod_cox1), offset(mod_cox2)) > ## ## ...but will lead to errors when the data changes its size (as expected) > ## chkerr(mod_cox3 <- update(mod_cox1, data = rats[1:200, ]), "differing number of rows") > > ## -- weights > data("eortc", package = "coxme") > we <- sample(c(1, 3), nrow(eortc), replace = TRUE) > mod_cox1 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc, + log_first = TRUE, order = 10, nofit = TRUE, weights = we, + support = c(1, 2500)) ## NOTE: set support explicitly to define same bases > dat <- eortc[rep(1:nrow(eortc), we), ] > mod_cox2 <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = dat, + log_first = TRUE, order = 10, nofit = TRUE, + support = c(1, 2500)) > par <- list(beta = coef(mod_cox2, with_baseline = TRUE), + theta = varcov(mod_cox2, as.theta = TRUE)) > chkeq(logLik(mod_cox1, param = par), logLik(mod_cox2, param = par)) > > ## -- offsets > os <- runif(nrow(sleepstudy)) > mod_lm1 <- Lm(Reaction ~ Days, data = sleepstudy, offset = os) > mod_lm2 <- LmME(Reaction ~ Days, data = sleepstudy) > chkeq(logLik(mod_lm1), logLik(mod_lm2), check.attributes = FALSE, + tol = 0.1, scale = 1, chkdiff = TRUE) > mod_lm2 <- update(mod_lm2, offset = os) > chkeq(logLik(mod_lm1), logLik(mod_lm2), check.attributes = FALSE) > > ## -- update > ## NOTE: When the updated model must have the exact same bases, pass the ctm into update > ## (used by e.g. logLik.tramME) > mod_cox1 <- CoxphME(Surv(time, status) ~ rx + (1 | litter), data = rats, log_first = TRUE, + order = 12, nofit = TRUE) > mod_cox2 <- update(mod_cox1, data = rats[1:200, ]) > chkid(mod_cox1$model$ctm, mod_cox2$model$ctm, chkdiff = TRUE) ## not the same > mod_cox2 <- update(mod_cox1, data = rats[1:200, ], ctm = mod_cox1$model$ctm) > chkid(mod_cox1$model$ctm, mod_cox2$model$ctm) ## same > > ## -- fitmod > ## FIXME: remove > ## data("neck_pain", package = "ordinalCont") > ## mod_colr <- ColrME(vas ~ time * laser + (1 | id), data = neck_pain, bounds = c(0, 1), > ## support = c(0, 1), order = 4, nofit = TRUE) > ## fit <- fitmod(mod_colr) > ## NOTE: they do not share the environment in the tramTMB > ## stopifnot(!identical(mod_colr$tmb_obj$env, fit$tmb_obj$env)) > ## fit2 <- ColrME(vas ~ time * laser + (1 | id), data = neck_pain, bounds = c(0, 1), > ## support = c(0, 1), order = 4) > ## chkeq(logLik(fit), logLik(fit2)) > > ## data("mcycle", package = "MASS") > ## m <- LmME(accel ~ s(times), data = mcycle, nofit = TRUE) > ## f1 <- fitmod(m) > ## f2 <- LmME(accel ~ s(times), data = mcycle) > ## chkeq(f1$param, f2$param, tol = 1e-4) ## NOTE: not exactly equal bec of different starting values > > ## -- model.frame > mod_cox3 <- CoxphME(Surv(time, status) | celltype ~ trt + s(age) + karno, + data = veteran, log_first = TRUE, nofit = TRUE) > chkeq(model.frame(mod_cox3), mod_cox3$data, check.attributes = FALSE) > chkeq(model.frame(mod_cox3, data = veteran[1:10, ]), mod_cox3$data[1:10, ], + check.attributes = FALSE) > chkeq(model.frame(mod_cox3, data = veteran[1:10, ], subset = karno < 60), + subset(mod_cox3$data[1:10, ], subset = karno < 60), + check.attributes = FALSE) > chkeq(model.frame(mod_cox3, data = veteran, subset = karno < 60), + model.frame(mod_cox3, data = mod_cox3$data, subset = karno < 60), + check.attributes = FALSE) > chkeq(model.frame(mod_cox3, subset = karno < 60), + subset(mod_cox3$data, subset = karno < 60), + check.attributes = FALSE) > chkeq(model.frame(mod_cox1, subset = litter <= 3), + subset(mod_cox1$data, subset = litter <= 3), check.attributes = FALSE) > chkeq(model.frame(mod_cox3, data = veteran, subset = time > 60)[[1]][, 1], + veteran$time[veteran$time > 60]) > chkeq(nlevels(model.frame(mod_lm, + subset = as.numeric(as.character(Subject)) > 310, + drop.unused.levels = TRUE)$Subject), + nlevels(sleepstudy$Subject) - 3L) > ## w/ offset > st <- sleepstudy > st$foo <- runif(nrow(st)) > mod_os <- update(mod_lm, offset = -log(foo), data = st) > chkeq(mf <- model.frame(mod_os, data = st[1:10, ]), mod_os$data[1:10, ]) > chkid("(offset)" %in% colnames(mf), TRUE) > chkerr(model.frame(mod_os, data = sleepstudy[1:10, ]), + "'foo' not found") > chkeq(model.frame(mod_os), model.frame(mod_os, data = st)) > chkeq(model.offset(model.frame(mod_os, subset = Reaction < 250)), + -log(st$foo[st$Reaction < 250])) > > ## -- model.matrix > nd <- model.frame(mod_cox3)[rep(1, 100), ] > nd[[1]] <- seq(1, 120, length.out = 100) > mm1 <- model.matrix(mod_cox3, data = nd, simplify = TRUE) > mm2 <- model.matrix(mod_cox3, data = nd, simplify = TRUE, keep_sign = FALSE) > chkid(mm1, mm2) ## equal in the case of CoxphME > mm1 <- model.matrix(mod_cox3, data = veteran, subset = karno > 40) > mm2 <- model.matrix(mod_cox3, data = model.frame(veteran, subset = karno > 40)) > chkid(mm1, mm2) > nd <- model.frame(mod_lm)[rep(1, 100), ] > nd[[1]] <- seq(150, 250, length.out = 100) > mm1 <- model.matrix(mod_lm, data = nd, simplify = TRUE) > mm2 <- model.matrix(mod_lm, data = nd, simplify = TRUE, drop_unused_groups = TRUE) > chkid(dim(mm1$Zt), c(36L, 100L)) > chkid(dim(mm2$Zt), c(2L, 100L)) > > ## -- Anova > ## NOTE: this should be at the end because ordinal will mask ranef and VarCorr, > ## which can cause problems > library("ordinal") > fit1a <- PolrME(rating ~ temp + contact + (1 | judge), data = wine, method = "probit") > fit2a <- clmm2(rating ~ temp + contact, random = judge, data = wine, + Hess = TRUE, nAGQ = 1, link = "probit") > chkeq(logLik(fit1a), logLik(fit2a), tol = 1e-7, check.attributes = FALSE) > fit1b <- PolrME(rating | contact ~ temp + (1 | judge), data = wine, method = "probit") > fit2b <- clmm2(rating ~ temp, nominal = ~ contact, random = judge, data = wine, + Hess = TRUE, nAGQ = 1, link = "probit") > lrt1 <- anova(fit1a, fit1b) > lrt2 <- anova(fit2a, fit2b) > chkeq(lrt1$Chisq[2], lrt2$`LR stat.`[2], tol = 1e-5) > > summarize_tests() ========================== Number of failed tests: 0 ========================== > > options(oldopt) > > proc.time() user system elapsed 5.75 0.42 6.12