## ===== confband ===== ## -- Test utils & settings source("test_util.R") .run_test <- identical(Sys.getenv("NOT_CRAN"), "true") oldopt <- options(digits = 4) set.seed(100) library("tramME") library("survival") m_cars <- BoxCoxME(dist ~ speed, data = cars) ## -- Consistency under various argument values pr1 <- confband(m_cars, newdata = data.frame(speed = c(0, 1))) pr2 <- confband(m_cars, newdata = NULL) pr3 <- confband(m_cars, newdata = data.frame(speed = c(0, 1)), baseline_only = TRUE) chkeq(pr1[[1]], pr2, check.attributes = FALSE) chkeq(pr1[[1]], pr3[[2]], check.attributes = FALSE) ## set q pr1 <- confband(m_cars, newdata = data.frame(speed = c(0, 1)), q = c(20, 40)) ## -- Consistency with predict data("sleepstudy", package = "lme4") m_sleep <- ColrME(Reaction ~ s(Days) + (Days | Subject), data = sleepstudy) nd <- model.frame(m_sleep)[c(1, 171), ] cb <- confband(m_sleep, newdata = nd, K = 100, type = "distribution") re <- ranef(m_sleep)[[1]][c(1, 18), ] pr <- predict(m_sleep, newdata = nd[, -1L], ranef = c(t(re)), K = 100, type = "distribution") chkeq(cb[[1]][, 2], pr[, 1], check.attributes = FALSE) chkeq(cb[[2]][, 2], pr[, 2], check.attributes = FALSE) ## set q nd <- data.frame(dist = c(20, 40), speed = c(1, 1)) pr2 <- predict(m_cars, newdata = nd, type = "trafo") chkeq(pr1[[2]][, 2], pr2, check.attributes = FALSE) ## TODO -- Adjust ## pr1 <- confband.tramME(m_cars, newdata = data.frame(speed = c(0, 1)), ## adjust = TRUE, K = 100, cheat = 20) summarize_tests() options(oldopt)