context("plot Topics as Heatmap including Clustering") test_that("plotHeat", { suppressWarnings(RNGversion("3.5.0")) set.seed(123) x1 <- matrix(sample(c(rep(0, 20), 1:20), 10000, replace = TRUE), 10, 1000) ldaID <- paste("ID", 1:200) x2 <- list(document_sums = x1) text <- matrix(sample(paste("word", 1:100), 10000, replace = TRUE), 200, 50) text <- lapply(apply(text, 1, list), unlist) names(text) <- paste("ID", 1:200) words <- makeWordlist(text)$words LDAdoc <- LDAprep(text, words) lda <- LDAgen(documents = LDAdoc, K = 3L, vocab = words, num.iterations = 20L, burnin = 70L, seed = 123) meta1 <- as.Date(sample(1:730, 1200, replace = TRUE), origin = "1990-10-03") names(meta1) <- paste("ID", 1:1200) meta <- data.frame(id = paste("ID", 1:1200), date = meta1, title = as.character(NA), stringsAsFactors = FALSE) obj <- textmeta(text = text, meta = meta) res1 <- plotHeat(object = obj, ldaresult = lda, ldaID = ldaID, file = file.path(tempdir(),"abc.pdf")) expect_equal(dim(res1), c(3, 4)) res2 <- plotHeat(object = obj, ldaresult = lda, ldaID = ldaID, unit = "month", file = file.path(tempdir(),"abc.pdf")) expect_true(all(res2$date == seq(min(res2$date), max(res2$date), "month"))) res3 <- plotHeat(object = obj, ldaresult = lda, ldaID = ldaID, file = file.path(tempdir(),"abc.pdf"), norm = TRUE) expect_equal(dim(res3), c(3, 4)) res4 <- plotHeat(object = textmeta(meta = obj$meta), ldaresult = lda, ldaID = ldaID, file = file.path(tempdir(),"abc.pdf")) expect_equal(dim(res4), c(3, 4)) expect_true(all(res4$date == seq(min(res4$date), max(res4$date), "year"))) expect_true(all(res3$date == seq(min(res3$date), max(res3$date), "year"))) expect_true(all(res1$date == seq(min(res1$date), max(res1$date), "year"))) })