test_that("tests for non-pretrained model_vit_b_16", { model <- model_vit_b_16() input <- torch::torch_randn(1, 3, 224, 224) model$eval() out <- model(input) expect_tensor_shape(out, c(1, 1000)) model <- model_vit_b_16(num_classes = 10) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 10)) rm(model) gc() }) test_that("tests for pretrained model_vit_b_16", { model <- model_vit_b_16(pretrained = TRUE) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 1000)) rm(model) gc() }) test_that("tests for non-pretrained model_vit_b_32", { model <- model_vit_b_32() input <- torch::torch_randn(1, 3, 224, 224) model$eval() out <- model(input) expect_tensor_shape(out, c(1, 1000)) model <- model_vit_b_32(num_classes = 10) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 10)) rm(model) gc() }) test_that("tests for pretrained model_vit_b_32", { skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1, "Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.") model <- model_vit_b_32(pretrained = TRUE) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 1000)) rm(model) gc() }) test_that("tests for non-pretrained model_vit_l_16", { model <- model_vit_l_16() input <- torch::torch_randn(1, 3, 224, 224) model$eval() out <- model(input) expect_tensor_shape(out, c(1, 1000)) model <- model_vit_l_16(num_classes = 10) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 10)) rm(model) gc() }) test_that("tests for pretrained model_vit_l_16", { skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1, "Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.") model <- model_vit_l_16(pretrained = TRUE) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 1000)) rm(model) gc() }) test_that("tests for non-pretrained model_vit_l_32", { model <- model_vit_l_32() input <- torch::torch_randn(1, 3, 224, 224) model$eval() out <- model(input) expect_tensor_shape(out, c(1, 1000)) model <- model_vit_l_32(num_classes = 10) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 10)) rm(model) gc() }) test_that("tests for pretrained model_vit_l_32", { skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1, "Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.") model <- model_vit_l_32(pretrained = TRUE) input <- torch::torch_randn(1, 3, 224, 224) out <- model(input) expect_tensor_shape(out, c(1, 1000)) rm(model) gc() }) test_that("tests for model_vit_h_14", { model <- model_vit_h_14() input <- torch::torch_randn(1, 3, 518, 518) model$eval() out <- model(input) expect_tensor_shape(out, c(1, 1000)) skip_if(Sys.info()[["sysname"]] == "Linux", "Skipping on Ubuntu CI") model <- model_vit_h_14(num_classes = 10) input <- torch::torch_randn(1, 3, 518, 518) out <- model(input) expect_tensor_shape(out, c(1, 10)) rm(model) gc() }) test_that("tests for model_vit_h_14", { skip_if(Sys.getenv("TEST_LARGE_MODELS", unset = 0) != 1, "Skipping test: set TEST_LARGE_MODELS=1 to enable tests requiring large downloads.") model <- model_vit_h_14(pretrained = TRUE) input <- torch::torch_randn(1, 3, 518, 518) out <- model(input) expect_tensor_shape(out, c(1, 1000)) rm(model) gc() })