context('dataset-pascal') t = withr::local_tempdir() test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2007', split = 'train', download = TRUE) expect_length(pascal, 209) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for test split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2007', split = 'test', download = TRUE) expect_length(pascal, 210) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,375,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 4)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2007', split = 'trainval', download = TRUE) expect_length(pascal, 422) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2007', split = 'val', download = TRUE) expect_length(pascal, 213) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,375,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 21)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2008', split = 'train', download = TRUE) expect_length(pascal, 511) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2008', split = 'trainval', download = TRUE) expect_length(pascal, 1023) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2008', split = 'val', download = TRUE) expect_length(pascal, 512) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,549000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,366,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 2)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2009', split = 'train', download = TRUE) expect_length(pascal, 749) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2009', split = 'trainval', download = TRUE) expect_length(pascal, 1499) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2009', split = 'val', download = TRUE) expect_length(pascal, 750) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,549000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,366,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 2)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2010', split = 'train', download = TRUE) expect_length(pascal, 964) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2010', split = 'trainval', download = TRUE) expect_length(pascal, 1928) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2010', split = 'val', download = TRUE) expect_length(pascal, 964) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,549000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,366,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 2)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2011', split = 'train', download = TRUE) expect_length(pascal, 1112) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2011', split = 'trainval', download = TRUE) expect_length(pascal, 2223) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2011', split = 'val', download = TRUE) expect_length(pascal, 1111) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,549000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,366,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 2)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for train split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2012', split = 'train', download = TRUE) expect_length(pascal, 1464) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for trainval split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2012', split = 'trainval', download = TRUE) expect_length(pascal, 2913) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,421500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,281,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 3) expect_equal(first_item$y$labels, c(1, 2, 16)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC Segmentation dataset for val split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_segmentation_dataset(root = t, year = '2012', split = 'val', download = TRUE) expect_length(pascal, 1449) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,549000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$mask) expect_tensor_shape(first_item$y$mask,c(21,366,500)) expect_tensor_dtype(first_item$y$mask,torch_bool()) expect_type(first_item$y$labels, "integer") expect_length(first_item$y$labels, 2) expect_equal(first_item$y$labels, c(1, 2)) expect_s3_class(first_item, "image_with_segmentation_mask") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2007', split = 'train', download = TRUE) expect_length(pascal, 2501) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,499500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for test split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2007', split = 'test', download = TRUE) expect_length(pascal, 4952) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,529500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2007', split = 'trainval', download = TRUE) expect_length(pascal, 5011) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(5,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 5) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2007", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2007', split = 'val', download = TRUE) expect_length(pascal, 2510) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(5,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 5) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2008', split = 'train', download = TRUE) expect_length(pascal, 2111) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,663000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2008', split = 'trainval', download = TRUE) expect_length(pascal, 4332) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2008", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2008', split = 'val', download = TRUE) expect_length(pascal, 2221) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2009', split = 'train', download = TRUE) expect_length(pascal, 3473) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,663000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2009', split = 'trainval', download = TRUE) expect_length(pascal, 7054) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2009", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2009', split = 'val', download = TRUE) expect_length(pascal, 3581) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2010', split = 'train', download = TRUE) expect_length(pascal, 4998) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,663000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2010', split = 'trainval', download = TRUE) expect_length(pascal, 10103) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2010", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2010', split = 'val', download = TRUE) expect_length(pascal, 5105) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2011', split = 'train', download = TRUE) expect_length(pascal, 5717) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,663000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2011', split = 'trainval', download = TRUE) expect_length(pascal, 11540) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2011", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2011', split = 'val', download = TRUE) expect_length(pascal, 5823) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for train split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2012', split = 'train', download = TRUE) expect_length(pascal, 5717) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,663000) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(2,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 2) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for trainval split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2012', split = 'trainval', download = TRUE) expect_length(pascal, 11540) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") }) test_that("tests for the Pascal VOC detection dataset for val split for year 2012", { skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = 0) != 1, "Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.") pascal <- pascal_detection_dataset(root = t, year = '2012', split = 'val', download = TRUE) expect_length(pascal, 5823) first_item <- pascal[1] expect_named(first_item, c("x", "y")) expect_length(first_item$x,562500) expect_type(first_item$x, "double") expect_type(first_item$y, "list") expect_tensor(first_item$y$boxes) expect_tensor_shape(first_item$y$boxes,c(1,4)) expect_tensor_dtype(first_item$y$boxes,torch_int64()) expect_type(first_item$y$labels,"character") expect_length(first_item$y$labels, 1) expect_s3_class(first_item, "image_with_bounding_box") })